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Abstract
Objectives Despite the popularity of closed circuit television (CCTV), evidence of its

crime prevention capabilities is inconclusive. Research has largely reported CCTV effect

as ‘‘mixed’’ without explaining this variance. The current study contributes to the literature

by testing the influence of several micro-level factors on changes in crime levels within

CCTV areas of Newark, NJ.

Methods Viewsheds, denoting the line-of-sight of CCTV cameras, were units of analysis

(N = 117). Location quotients, controlling for viewshed size and control-area crime

incidence, measured changes in the levels of six crime categories, from the pre-installation

period to the post-installation period. Ordinary least squares regression models tested the

influence of specific micro-level factors—environmental features, camera line-of-sight,

enforcement activity, and camera design—on each crime category.

Results First, the influence of environmental features differed across crime categories,

with specific environs being related to the reduction of certain crimes and the increase of

others. Second, CCTV-generated enforcement was related to the reduction of overall

crime, violent crime and theft-from-auto. Third, obstructions to CCTV line-of-sight caused

by immovable objects were related to increased levels of auto theft and decreased levels of

violent crime, theft from auto and robbery.

Conclusions The findings suggest that CCTV operations should be designed in a manner

that heightens their deterrent effect. Specifically, police should account for the presence of

crime generators/attractors and ground-level obstructions when selecting camera sites, and

design the operational strategy in a manner that generates maximum levels of enforcement.
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Introduction

The popularity of closed circuit television (CCTV) has grown exponentially in recent

times. The tactic’s rise can be traced to Great Britain, where three quarters of the Home

Office budget funded CCTV-related projects from 1996 to 1998 (Armitage 2002). This

generated a dramatic expansion of CCTV in Britain, from approximately one hundred

systems in 1990 (Armitage 2002) to over four million less than two decades later

(Farrington et al. 2007). The deployment of CCTV in numerous American cities suggests

that the United States has begun to follow a similar path (Cameron et al. 2008; Caplan et al.

2011; King et al. 2008; La Vigne et al. 2011; Mazerolle et al. 2002; Ratcliffe et al. 2009).

Despite this worldwide popularity, best-practices for CCTV in policing have been largely

understudied. Specifically, little effort has been devoted to understanding how CCTV effect

can be maximized. CCTV systems often have a vague mission to ‘‘prevent crime’’ with little

consideration being given to a number of pertinent issues, such as site selection, proactive

monitoring practices, evidence collection, and training (Gill and Spriggs 2005).

This study moves beyond the typical research question of ‘‘Does CCTV work?’’ towards

‘‘In which context does CCTV work best?’’ We test the influence of several micro-level

factors on changes in post-installation crime levels within camera viewsheds. The meth-

odology builds upon previous research suggesting the heterogeneity of pertinent charac-

teristics of camera sites may explain the varying effect of CCTV (Caplan et al. 2011;

Ratcliffe et al. 2009). Our findings suggest that CCTV effect is contextual, somewhat

influenced by a camera’s environmental backcloth, line-of-sight, ability to generate pro-

active enforcement, and the targeted crime type.

Review of Relevant Literature

The ‘‘Mixed’’ Effect of CCTV and the Influence of Methodology

Reaching a firm consensus on the crime prevention capacity of CCTV is somewhat dif-

ficult. While numerous evaluations have reported some positive outcomes (Caplan et al.

2011; La Vigne et al. 2011; Mazerolle et al. 2002; Ratcliffe et al. 2009), CCTV has not

produced consistent benefits and, in many instances, there has been little or no evidence of

crime reductions (Cameron et al. 2008; Farrington et al. 2007; Gill and Spriggs 2005; King

et al. 2008). Given these findings, it is difficult to anticipate the performance of CCTV

upon installation. While previous works have called for the identification of precise con-

texts in which CCTV best performs (Caplan et al. 2011; Gill and Spriggs 2005; Phillips

1999; Ratcliffe et al. 2009; Welsh and Farrington 2002) little has been developed in the

sense of ‘‘best practices.’’ While inconsistent findings may be due to differences in the

utility of individual operations (La Vigne et al. 2011) or characteristics of target areas (Eck

2002), limitations of common research methodologies may have also contributed to the

uncertainty (Caplan et al. 2011).

A particular methodological issue revolves around the scope of most CCTV studies. The vast

majority of CCTV evaluations measure impact on a macro level; systems considered as a whole

are deemed as either effective or ineffective at preventing crime (King et al., 2008; Mazerolle

et al., 2002; Phillips, 1999; Welsh and Farrington, 2007, 2009). While the analysis of entire

systems is obviously a necessary endeavor, this approach precludes the exploration of CCTV’s

micro-level effect. Such research essentially dismisses the possibility that effective camera sites

exist within ineffective systems, and vice versa (Caplan et al. 2011: 270).
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The aggregation of findings is largely a function of the requirement to accommodate the units

of analysis employed in CCTV research. Researchers have typically utilized aggregate geog-

raphies where cameras were installed, such as ‘‘neighborhoods’’ or ‘‘police districts,’’ in tests of

CCTV (Brown 1995; Ditton and Short 1999; Sivarajasingam et al. 2003; Squires 2000).

Measuring crime at such large units precludes researchers from disaggregating data to test

intervention effects within micro-areas (Johnson et al. 2009: 172). Aggregate geographies also

suffer from the fact that they constitute poor representations of camera coverage. As publicly-

deployed cameras have the ability to view limited distances, areas such as ‘‘neighborhoods’’

vastly overestimate CCTV coverage. In addition, pre-determined administrative boundaries

may not be fit for social analysis for the simple—yet commonly overlooked—fact that they are

more often drawn for the convenience of service delivery and are not necessarily representative

of the behavioral clusters that are of interest for surveillance. It is unlikely that people cogni-

tively recognize such boundaries, let alone base their travel patterns on these units.

Another common approach is the designation of circular buffer areas around cameras as

units of analysis (Cameron et al. 2008; La Vigne et al. 2011; Mazerolle et al. 2002). While

buffer zones truncate the size of targets areas, they also can inaccurately reflect CCTV

coverage. Buffer zones assume a 360 degree, unobstructed line-of-sight for each camera,

which rarely occurs in a real world environment (Chainey 2000; Eck 2002). Street signs,

building awnings, and telephone poles are common fixtures that can restrict a camera’s

line-of-sight. Therefore, the geography depicted by a circular buffer does not realistically

depict a camera’s coverage area.

Recent CCTV evaluations by Caplan et al. (2011) and Ratcliffe et al. (2009) improve upon

traditional CCTV methodologies. Both of these studies utilized viewsheds denoting the actual

line-of-sight of cameras as units of analysis.1 Caplan et al. (2011) utilized a method that

estimated each camera’s viewshed via aerial imagery of CCTV areas in Newark, NJ. The

researchers created 582-foot buffers around each camera location (representing twice the

median length of Newark’s blocks), then used ArcGIS tools to digitize viewshed polygons that

accounted for buildings and other barriers to a camera’s line of sight. Ratcliffe et al. (2009) took

a more hands-on, albeit less accessible, approach in their evaluation of Philadelphia’s CCTV

system by viewing actual camera feeds at the police department. In conjunction with police

personnel, the researchers digitized precise areas visible to each camera. Viewsheds more

accurately reflect camera coverage than traditionally utilized units of analysiswhile recognizing

each camera site as a unique environment. Such an approach allows researchers to test the intra-

system effect of CCTV in addition to overall system performance. Indeed, Ratcliffe et al. (2009)

found that while Philadelphia’s CCTV system generated a 13.3 % reduction in overall crime,

1 Under the deterrence doctrine, CCTV is most likely to prevent crime when an offender believes cameras
may be monitoring their activity and perceives this attention to put them at increased risk of apprehension.
This has implications regarding the units of analysis utilized in CCTV research. As articulated by Ratcliffe
et al. (2009), ‘‘the difficulty with offender perceptions is that they are not measurable without extensive and
expensive interviewing. Furthermore, the resultant offender perception will most likely vary from person to
person. In other words, while the range of a CCTV camera—as perceived by a criminal—is in the eye of the
beholder, finding and interviewing suitable beholders is beyond the budget of most studies, and the results
are likely to be quite variable’’ (751). However, while Ratcliffe et al. presented viewsheds as an alternative
to the ‘‘offender perception’’ approach, the concepts certainly overlap. Deterrence can only be realistically
expected where a potential offender’s conception of ‘‘space’’ and a CCTV camera’s line-of-sight coincide.
In this sense, a camera’s surrounding environment comprises a ‘‘spatial node’’ cogitatively identified by
pedestrians as a singular ‘‘place’’ (Lynch 1960). It is within such an area an offender would most likely
perceive a heightened level of risk. Given the limited visual extent of cameras, the area immediately visible
to CCTV is probably the geography in which offender perception of camera presence is at its peak.
Furthermore, viewsheds likely more accurately reflect street-level perceptions of potential offenders than the
types of units of analysis traditionally utilized in CCTV research (e.g. ‘‘neighborhoods’’ and ‘‘buffers’’).
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just as many individual cameras had no effect on crime as there were locations that showed a

benefit. Caplan et al. (2011) reported a similar pattern in Newark, NJ. While auto theft was the

only crime to experience a system-wide reduction, of the 73 cameras in place at the time 58

experienced reduced levels of shootings, 34 experienced reduced levels of auto theft and 41

experienced reduced levels of theft from auto.

Towards Explaining the Varying Effect of CCTV

The findings of Caplan et al. (2011) and Ratcliffe et al. (2009) have significant implications

for CCTV policy and practice. The varied effect of individual cameras within singular

systems suggests cameras may have differed on certain factors that influence effectiveness.

Police may be able to maximize CCTV effect by identifying and strategically manipulating

such factors. Findings of previous research suggest a number of CCTV characteristics

whose heterogeneity across camera sites may help explain variance in effectiveness.

CCTV effect may be related to specific place-based characteristics of target areas. Just

as certain crimes are conducive to certain environments, specific crime prevention tactics

(e.g. CCTV) may be more effective at certain places than others (Eck 2002). Despite the

rich literature demonstrating the effect of the environment on crime incidence (Bran-

tingham and Brantingham 1993; Eck and Weisburd 1995; Groff and La Vigne 2001;

Kennedy et al. 2011), the environmental composition of CCTV areas has been largely

ignored. A noteworthy exception is the recent meta-analysis conducted by Welsh and

Farrington (2009). Forty-four studies were categorized according to one of four main

settings: city and town centers, public housing, public transport, and car parks. Car park

systems produced the largest crime reductions, which concurs with findings of national-

level studies in the UK (Gill and Spriggs 2005; Farrington et al. 2007).

Despite this observed support for CCTV in car parks, the results are not without caveats. The

findings are complicated by the fact that each of the six car park evaluations included in CCTV

meta-analyses and multi-site evaluations (Farrington et al. 2007; Gill and Spriggs 2005; Welsh

and Farrington 2009) were combined with other interventions, namely improved lighting,

improved fencing, and security guards. Thus, crime reductions in car parks may speak more to

the effectiveness of a package of interventions focused on a particular crime type (e.g. ‘‘car

crime’’) than the specific effect of CCTV (Welsh and Farrington 2007: 46). In addition,

aggregate classifications of study settings may fail to capture the unique characteristics of each

camera’s surrounding environment. Grouping all ‘‘city center’’ systems together, for example,

ignores micro-level features that can differ across sites. It is certainly possible that a particular

city center may be rife with crime generators/attractors while others are relatively free of them.

In this sense, Oberwittler and Wikström (2009) argue smaller units of analysis are less likely to

be heterogeneous in their environmental composition than larger areas. Thus, environmental

context is better measured through Brantingham and Brantingham’s (1993: 6) concept of the

‘‘environmental backcloth,’’ defined as ‘‘elements that surround and are part of an individual

and that may be influenced by or influence his or her criminal behavior,’’ than larger areas.

Previous studies have found high levels of camera coverage to be particularly associated

with successful CCTV deployment. The percentage of target areas covered by CCTV

(Farrington et al. 2007) and number of cameras installed per unit area (Gill and Spriggs

2005) have shown to be related to crime reduction. Camera design may also be influential.

Public CCTV cameras primarily take one of two forms: traditionally-designed overt

cameras and semi-covert ‘‘dome’’ cameras that employ one-way transparent casing

(Ratcliffe 2006: 4–5). As illustrated in Fig. 1, the line of sight of overt cameras is easily

determined while semi-covert ‘‘dome’’ cameras do not reveal the exact places and/or
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persons currently under surveillance. Caplan et al. (2011) argued that the opaque housing

of dome cameras make them more likely ‘‘to produce a sense of omnipresence monitoring

of the viewshed at all times’’ as compared to traditionally designed cameras (261). While

proponents of overt systems claim conspicuous camera presence produces deterrence, risk-

appraisal by potential offenders may be facilitated by such systems. Waples and Gill (2006:

12), for example, found that ‘‘box cameras’’ whose line-of-sight was easily determined

afforded offenders the opportunity to avoid detection by offending ‘‘behind the camera’s

back.’’ Such observations suggest that cameras allowing for the easy identification of

precise places under surveillance may have a diminished capacity to generate deterrence as

compared to semi-covert ‘‘dome’’ cameras.

Finally, the varying effect of CCTV may be related to the level to which the technology

is incorporated into routine law enforcement tactics. The importance of such integration is

strongly supported by recent research of the Urban Institute (La Vigne et al. 2011). La

Vigne et al. (2011) analyzed CCTV systems in three US cities: Baltimore, Chicago, and

Washington, DC. The systems that effectively reduced crime were those most frequently

monitored by police and heavily incorporated into the police function. In Baltimore, police

integrated the camera system into the daily routine of proactive street units and designed

patrols to add additional coverage to areas officials felt would be susceptible to crime

displacement. The researchers found that three of the four Baltimore systems experienced

crime decreases. In Chicago, police generated surveillance ‘‘missions,’’ which designated

specific camera sites to receive enhanced levels of monitoring on a daily basis. One of

Chicago’s systems experienced a significant decrease in total crime counts with the other

experiencing a significant decline in robbery. Washington DC, on the other hand, rarely

incorporated active monitoring operations and experienced no tangible crime control

benefits as a result of CCTV. The findings of La Vigne et al. (2011) are further supported

by other research finding CCTV systems incorporating no active monitoring have little

effect on crime (King et al. 2008; La Vigne and Lowry 2011).

Literature Review Summary and Scope of the Current Study

Research on CCTV has thus far generated little in the sense of ‘‘transferrable lessons’’ (Gill

and Spriggs 2005). While most evaluations find the crime prevention utility of CCTV to be

Fig. 1 Semi-covert and overt CCTV cameras
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‘‘mixed,’’ limitations of common research designs do not allow for exploration of this

variability. Units of analysis often fail to incorporate micro-level geographies appropriate

in the study of place-based crime prevention efforts (Weisburd et al. 2008). Furthermore,

data on the heterogeneity of pertinent CCTV-related factors are often not accessible to

researchers.

The current study picks up where Caplan et al. (2011) left off in their study of CCTV in

Newark, while building upon the viewshed methodology of Ratcliffe et al. (2009). Our

particular aim is the identification of micro-level factors influencing CCTV camera

effectiveness. Crime level changes were calculated for each individual camera site,

allowing for an intra-system observation of effect heterogeneity. Statistical models con-

trolling for the presence of certain crime attractors and generators, camera line-of-sight,

enforcement activity, and camera design allowed us to test the influence of numerous

factors on CCTV camera effect.

Research Setting

Newark is the largest city in New Jersey, spanning approximately twenty-six square miles

with a population of nearly 280,000 persons (US Census Bureau 2011). In 2006, under new

leadership, the Newark Police Department underwent a major re-organization and change

in mission, and simultaneously upgraded many of their technological capabilities. Tech-

nology investments included a public CCTV system, which currently includes 146 cam-

eras. Most cameras are installed on the street-level (N = 137) compared to rooftops

(N = 9) with the design being split between semi-covert ‘‘dome’’ cameras (N = 114) and

traditionally-designed overt cameras (N = 32). Live footage from the cameras is moni-

tored from a centralized control room at the police department by two CCTV operators

under the supervision of a police sergeant.

Despite the emphasis on live monitoring, levels of detections are low in Newark, which

concurs with findings of previous research (Ditton and Short 1999; Gill et al. 2005; Norris

and Armstrong 1999; Norris and McCahill 2006; Sarno et al. 1999). Figure 2 shows the

detection frequency of viewsheds during the 1-year study period. While viewsheds aver-

aged 6.30 detections, 21 viewsheds (17.9 %) generated no detections and 86 (73.5 %)

generated five detections or less. Enforcement activity was even more infrequent. View-

sheds averaged 1.91 enforcement actions, with 65 (55.5 %) generating none, and 168

(92.3 %) generating five or less. The infrequent nature of proactive surveillance is also

reflected by the system-wide statistics. While the system generated 26.84 detections and

9.47 enforcement actions per week at the onset of the operation, activity reduced to weekly

averages of 2.11 detections and 1.22 enforcement actions when the system expanded to

146 cameras (Piza et al. 2012: 19).

The impact of Newark’s CCTV system on crime has received little empirical attention

outside of the aforementioned analysis by Caplan et al. (2011), which found auto theft to be

the only one of the three crime types included in the analysis to have experienced a system-

wide reduction. In addition to measuring the system-wide trend, Caplan et al. (2011)

measured individual-camera crime levels for both the ‘‘pre’’ and ‘‘post’’ installation periods

via a location quotient (LQ). An LQ change towards the negative from the ‘‘pre’’ to ‘‘post’’

period suggested a crime reduction. Of the 73 camera viewsheds included in the analysis,

58 experienced reduced levels of shootings, with auto theft and theft from auto reducing in

34 and 41 viewsheds, respectively. Caplan et al. (2011) hypothesized that this variance in

CCTV effect was due to the heterogeneity of certain factors across the viewsheds.
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However, identifying and contextualizing the influence of such factors was beyond the

scope of their study. The current study seeks to contribute to the literature by taking the

next step towards contextualizing the influence of micro-level factors on CCTV camera

effect.

Methodology

Units of Analysis

Units of analysis for the current study build upon the newly-developed viewshed meth-

odology. We approached viewshed creation in a hands-on manner, similar to Ratcliffe

et al. (2009). Researchers viewed the live feeds of the panning-mode2 of all CCTV cameras

in Newark over the course of 5 months (April–September 2011) and digitized the viewshed

of each site. A detailed GIS base map (with layers displaying streets, land parcels, building

footprints and aerial imagery) was incorporated to ensure that the digitized viewsheds

accurately reflected the physical landscape. For example, if the viewable area to the

southeast of a camera was obstructed by a building, researchers ‘‘snapped’’ the viewshed

boundaries to that building in order to accurately reflect the extent of the camera’s view.

We also took precautions to not overlook the insight of Newark’s CCTV operators.

Ratcliffe et al. (2009) similarly consulted with Philadelphia police officers to determine

viewshed boundaries. In order to gain such perspective, at the conclusion of each visit to

the control room, researchers met with the commander of the Video Surveillance Unit, who

was asked to ascertain whether the viewsheds created during that visit accurately reflected

To
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Detection  frequency

Fig. 2 Camera detection frequency

2 When manually controlled by a user, each camera has the ability to see further than what is visible in
panning mode. However, the panning mode was digitized as the viewshed for two reasons. One, given the
large camera to operator ratio all of the cameras are in ‘‘panning mode’’ more often than they are actively
controlled by an operator. Secondly, constructing the viewshed based on a camera’s possible view would
lead to areas significant distances away from the camera being designated as part of the viewshed. For
example, Newark officials demonstrated to us that a camera on top of an office building was able to view
airline logos on airplanes parked at Newark Liberty International Airport over a mile away. Creating
viewsheds based on this capacity would lead to an over-estimation of CCTV coverage, similar to the
problem encountered when aggregate geographies serve as units of analysis.
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the areas covered by the cameras’ line-of-sight. There was a high level of agreement

between the commander and the research staff.3

This study’s methodology further builds upon previous research by denoting areas

within viewshed boundaries obstructed from view. While previous studies digitize overall

camera coverage, such procedures do not allow for the identification of ground level

objects that commonly impede a camera’s visibility (see Fig. 3). Viewsheds created for

this study accounted for two particular obstructions: (1) immovable objects (e.g.

traffic signs and telephone poles), and (2) foliage (e.g. leaves from trees and bushes) (see

Fig. 4).4

An accompanying catchment zone was created for each viewshed to allow for a test of

displacement and diffusion of benefits (Clarke and Weisburd 1994). Following the

approach of Ratcliffe et al. (2009), catchment zones began as 291 foot buffers around each

viewshed, to reflect the median block size in Newark. The buffers were adjusted to take

into account local geography and road patterns surrounding each viewshed. While this

approach creates zones of slightly varying sizes, it reflects the variability of street networks

around cameras. As explained by Ratcliffe et al. (2009), ‘‘… the use of actual camera

viewsheds can mean that a … buffer stretches to just short of a neighboring intersection. In

Fig. 3 Line-of-sight obstructions

3 A small level of disagreement occurred regarding the visible extent of a handful of rooftop cameras. In
these instances, the commander believed the viewsheds extended over too large an area, leading the
researchers to redraw the viewsheds to a more concise area. However, all of the rooftop viewsheds were part
of a group of cameras that were excluded from the analysis (which will be discussed later on), rendering this
small disagreement between the researchers and commander moot.
4 We originally considered excluding these areas from the final viewsheds. However, we decided against
this approach in recognition of the imprecise nature of crime location data. For example, at one camera site
the northwest corner of an intersection was obstructed from view by a building awning. A manual review of
the crime reports for 10 incidents occurring at this intersection found that officers did not denote the precise
corner where the offense took place in a single instance. This prevented us from identifying whether the
incidents occurred on the obstructed corner, or one that was visible to CCTV. Since police officers com-
monly record incident locations as intersections rather than specific addresses (Braga et al. 2011: 15) we
decided against excluding the obstructed areas from the viewsheds.
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circumstances like this, the addition of an extra 20 ft. is sufficient to include the street

intersection … and create a buffer that is a more realistic approximation of the likely

displacement area’’ (752). With this in mind, when a buffer was half a block or less from

the nearest intersection, the catchment zone was extended to the intersection. Otherwise,

the catchment zone was constricted to the buffer (see Fig. 5).

This process resulted in the creation of viewsheds and catchment zones for 141 of the

system’s 146 cameras. Five cameras were out of service for about a year and were thus

unable to be viewed. Thirteen viewsheds were excluded due to the police department

having imprecise information regarding their installation dates.5 Overlapping viewsheds

were considered as single sites to protect against the multiple counting of individual crime

incidents falling within more than one viewshed (Ratcliffe et al. 2009); 18 viewsheds

overlapping with at least one other viewshed were combined into seven cases. After these

adjustments, the analysis included 117 viewsheds installed over four dates: 3/15/08 (44),

7/31/08 (50), 12/10/09 (13), and 4/23/10 (10).

Fig. 4 Example viewshed with denoted areas of obstruction

5 The Newark Police Department recorded the installation date of 11 cameras as 6/8/2007, coinciding with
the official formation of the Video Surveillance unit. However, according to those directly involved with the
camera deployment, installation of these cameras occurred during a ‘‘test phase’’ spanning several months in
2006 with intermittent monitoring of the cameras beginning as early as February 2007. Two additional
cameras were unable to transmit footage to the control room for over a year after their installation, likewise
leading to their exclusion.
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Dependent Variable: Camera Effect on Crime

Camera effect was determined by measuring crime level changes within each viewshed,

from the 1-year pre-installation period to the 1-year post-installation period.6 While pre-

vious studies have given little consideration to the locations where crimes occur, CCTV’s

deterrent effects are likely limited to public areas that can potentially be viewed on camera.

Since the increased ‘‘risk’’ suggested by camera presence is lost on potential offenders

indoors (who cannot see public cameras), crime occurring out of public view (e.g. a

domestic assault in a residence) should not be included in an evaluation of CCTV in order

to preserve construct validity (Cameron et al. 2008; Caplan et al. 2011).

The analysis was initially designed to only include crimes occurring outdoors. The

Newark Police Department’s GIS files for the years 2008–2010 include a variable denoting

whether the crime occurred indoors or outdoors, facilitating the identification of such

incidents. However, the analysis necessitated the use of crime incidents from as far back as

2007 in order to account for the pre-installation period of cameras installed in 2008.

Unfortunately, the Newark Police Department’s pre-2008 GIS files do not include the

‘‘indoor/outdoor’’ variable. Therefore, we incorporated crime types that predominantly

Fig. 5 Example catchment zone with respective viewshed and 291 foot buffer

6 While some cameras were in place for longer than 1 year, having uniform pre/post periods allows for a
more accurate comparison of sites. Previous research has found that place-based police interventions
sometimes exhibit ‘‘deterrence decay’’ after their initial deployment (Sherman 1990), including CCTV
(Mazerolle et al. 2002). Restricting the study period to 1-year ensures that camera effectiveness is measured
in a uniform way, by testing the initial impact of each camera while excluding any existing deterrence decay
effects.

J Quant Criminol

123

Author's personal copy



occur outdoors instead of crime incidents that did occur outdoors. From 2008 through

2010, murder, robbery, non-fatal shootings, auto theft, and theft from auto occurred out-

doors over 80 % of the time—with no other crimes occurring outdoors in more than

63.88 % of cases—and were thus included in the analysis (see Table 1).7

Crime data were classified into six different categories. All of the crime types (robbery,

murder, shootings, auto theft, and theft from auto) were combined to create an ‘‘overall

crime’’ category. Robbery, murder, and shootings were combined to create a ‘‘violent

crime’’ category. Auto theft and theft from auto were combined to create a ‘‘property

crime’’ category. Robbery, auto theft, and theft from auto were each included on their own

as disaggregate categories. Murder and shootings were not included as disaggregated

categories due to their sparse occurrence, compared to the other crime categories (see

Table 1).

Following the approach of Caplan et al. (2011), crime levels were measured via

Location Quotients (LQ), which measure the occurrence of crime in a target area compared

to its occurrence over a larger control area. LQs allow for the easy identification of areas

with crime levels ‘‘at the expected region-wide rate, areas that have lower levels of crime,

and areas that are ‘hotter’ than expected’’ (Ratcliffe 2010: 18). LQs add perspective to

crime totals by controlling for two important factors: (1) the size of the target area and (2)

crime incidence within a control area. The first factor is important in the current study due

to the varying sizes of the viewsheds. The second factor is important since the comparison

of a target area with a control area is considered the minimal interpretable research design

(Cook and Campbell 1979).

LQs were calculated for each viewshed via the following equation:

LQ ¼ xi=tið Þ= X=Tð Þ;

where xi represents the number of crimes in viewshed i; ti represents the total area of

viewshed i; and X and T represent the numbers of crimes of type x within the surrounding

Table 1 Crime incidents occurring indoors/outdoors in Newark, 2008–2010

Crime Total Outdoor % outdoor Indoor % indoor

Aggravated assault 3,250 2,076 63.88 1,174 36.12

Auto theft 10,958 10,886 99.34 72 0.66

Burglary 5,966 397 6.65 5,569 93.35

Murder 219 177 80.82 42 19.18

Robbery 4,566 3,732 81.73 834 18.27

Shootings 864 767 88.77 97 11.23

Theft 4,555 1,573 34.53 2,982 65.47

Theft from auto 6,817 6,737 98.83 80 1.17

7 While being captured in police reports as an indoor crime, burglary certainly is significantly related to
outdoor activities of offenders, who must first breach the outer structure of a property in order to get indoors.
However, we decided against including burglary in the analysis due to potential inaccuracies in Newark’s
2007 Burglary GIS files. In 2008, Newark Police officials conducted an audit of all burglary and indoor theft
incidents occurring in 2006 and 2007 to ensure the proper classification of each incident. With the intro-
duction of an electronic Records Management system, it was discovered that the ‘‘upgrading’’ or ‘‘down-
grading’’ following the initial investigation of property crime oftentimes was not reflected in the crime
statistics. While the crime reports and UCR statistics were corrected to reflect the results of the audit,
Newark officials were unclear whether the 2007 GIS files were updated.
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police precinct and the area of the surrounding police precinct, respectively.8 LQ values

below one suggest the area to have less crime than is more generally found across the

aggregate geography; LQ values greater than one suggest a crime concentration. As

explained by Brantingham and Brantingham (1998: 271), an LQ of 1.4 shows that crime is

40 % higher than the aggregate trend while a value of 0.7 suggests the area to be 30 %

below the aggregate trend.

Two separate LQs were calculated for each viewshed, for the 1-year ‘‘pre’’ and for the

1-year ‘‘post’’ periods. Each viewshed’s ‘‘pre’’ LQ was subtracted from the ‘‘post’’ LQ,

creating a ‘‘Change in Location Quotient’’ (DLQ) variable. Negative DLQ values were

considered as evidence of crime reductions while positive DLQ values suggest increasing

crime levels (Caplan et al. 2011). DLQ values were calculated for all six crime categories.

In order to maintain the internal validity of the dependent variable, we excluded inci-

dents falling within viewshed catchment zones when calculating the LQs. This was done to

ensure that geographic displacement was not confused with a deterrence effect. For

example, if crime incidents are displaced from a camera’s viewshed to its catchment zone

post-installation, the DLQ variable would identify this as evidence of a crime reduction

(e.g. the crime incidents within the viewshed decreased while incidents within the precinct

increased). By excluding incidents that occurred within the catchment zone we ensure that

crime levels in the surrounding precinct are completely unrelated to CCTV, maintaining

the validity of the DLQ variables.9

Catchment zones for all viewsheds with negative DLQ values were included in a

subsequent analysis of displacement. Similar to the main analysis, ‘‘pre’’ and ‘‘post’’ LQs

were calculated for the catchment zones with negative DLQ values suggesting a crime

reduction and positive values suggesting an increase. As previously discussed, the

numerator of the LQ formula divides the number of crime incidents within the target area

by the overall square footage of the target area. Therefore, it should be mentioned that the

square footage of the catchment zones were calculated in a slightly different manner than

the viewsheds. To review, viewshed boundaries were constricted by surrounding buildings,

a function of researchers digitizing viewsheds by viewing actual camera feeds. Since

catchment zones were constructed via geoprocessing functions in ArcGIS they extended

over space occupied by buildings in the real world. To remove the influence of these indoor

areas on the LQ formula, we subtracted the square footage of the building footprints falling

within each catchment area from the overall square footage of the catchment zone to derive

ti in the LQ formula.10 This ensured that the catchment zones represented publically

8 While Caplan et al. (2011) calculated LQs based on city-wide crime and geography figures, we chose to
utilize each viewshed’s surrounding precinct as its control area. This is in recognition of the fact that local
crime levels are highly contingent upon localized factors, including the influence of localized police
practices, which may vary across precincts. By comparing viewsheds with encompassing precincts, we
ensure that the control areas were susceptible to the same organizational forces that affected the viewsheds
(Ratcliffe et al. 2009: 752–753).
9 Hypothetically, CCTV cameras may displace crime by a distance greater than the reach of the catchment
zone. In such cases, the ‘‘displaced’’ crime incidents would get calculated in the LQ statistics. However,
empirical research has demonstrated that the likelihood of spatial displacement decreases as the distance
from the target area increases (Bowers and Johnson 2003; Eck 1993). Therefore, a distance of only a block
or two is generally accepted as an appropriate boundary for a test of displacement (Weisburd and Green
1995). Our catchment zones adhere to this principle while also following the approach of previous CCTV
studies (Caplan et al. 2011; Ratcliffe et al. 2009). Therefore, we consider the risk of displaced crimes
occurring outside of the catchment zone to be commensurate with that of previous crime-and-place studies.
10 Researchers measured the area of building footprints falling within each catchment zone by utilizing the
‘‘clip’’ function of ArcToolbox and then calculating the total square footage of the resulting shapefile.
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accessible areas, similar in scope to the geography denoted by viewsheds, and prevented

DLQ values in catchment zones from being substantially lower than their viewshed

counterparts (due to an inflated ‘‘area’’ caused by inclusion of the indoor spaces). This

process was utilized in both the LQ formulas for crime incidents as well as the LQ

formulas for the environmental features discussed in the following section.

Independent Variables

Sixteen covariates were included in the statistical models. Variables were grouped into four

categories: environmental features (nine), line-of-sight (three), enforcement activity (three),

and camera design (one). The operationalization of each independent variable is discussed

below.

Environmental Features

Nine independent variables capture the environmental context of each camera site. Eight

were included in the analysis due to their status as crime generators or crime attractors

(Brantingham and Brantingham 1995) as per previous empirical research: bars (Ratcliffe

2012; Scott and Dedel 2006); liquor stores (Bernasco and Block 2011); schools (Roncek

2000); general retail shops (Bernasco and Block 2011; Felson 2002); corner grocery stores

(Bernasco and Block 2011; Myers 2002); take out eateries and fast food restaurants

(Bernasco and Block 2011; Kennedy et al. 2011); public transit stops (Block and Block

1999; Smith and Clarke 2000); and public housing and privately owned ‘‘at-risk’’ housing

complexes (Eck 1994; Zanin et al. 2004).11 Parking lots were included in recognition of

previous research showing them to be areas conducive to the effect of CCTV (Gill and

Spriggs 2005; Farrington et al. 2007; Welsh and Farrington 2009).

A number of the environmental features were collected from Newark Police Department

databases,12 with the remainder obtained from InfoGroup (www.infogroup.com), a leading

provider of residential and commercial information for reference, research, and marketing

purposes.13 Most datasets were point GIS layers, geocoded to street centerlines according

to their address.14 The parking lots file was a GIS polygon layer containing all land parcels

zoned as ‘‘parking lots’’ by the City of Newark. The ‘‘at-risk’’ housing file, created and

maintained by the Newark Police Department’s CompStat unit through a partnership with

the Newark Housing Authority and various City of Newark departments, is a GIS polygon

layer containing land parcels with particular types of housing complexes. In addition to

public housing units, the at-risk housing file includes privately-owned complexes similar in

scope to public housing complexes, in recognition of previous analyses finding that such

complexes contribute to crime in a similar manner as public housing in Newark (Kennedy

11 While some of the above features can be categorized together based on certain similarities, disaggre-
gating these micro-features minimizes potential threats to content validity that can surface through con-
sidering different areas as if they were the same (Stucky and Ottensmann 2009). For example, since bars and
liquor stores have different hours of operation in Newark (liquor stores close at 10:00 p.m. while bars may
remain open well after 2:00 am) they likely have differing influence on crime occurrence despite both being
classified as ‘‘liquor establishments.’’
12 Bars, liquor stores, schools, transit stops, ‘‘at-risk’’ housing, and parking lots.
13 Take-out eateries, corner stores, and general retail shops. Since the Newark Police Department was not in
possession of this data, we were unable to cross validate the data to test their validity.
14 Bars, liquor stores, schools, general retail shops, corner stores, take out eateries and fast food restaurants,
and public transit stops.
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et al. 2011; Piza and O’Hara 2012; Zanin et al. 2004). City of Newark personnel identified

all residential buildings in the city with 10 or more units with similar structural attributes as

public housing (e.g. single entrances, limited automobile accessibility to the courtyard,

etc.) that received government subsidies for renting to low-income tenants.15 Privately

owned complexes fitting these criteria were merged with public housing to create the ‘‘at-

risk’’ housing layer.

An important consideration is the proximity at which the spatial influence of these

features (Caplan 2011) may affect activity within viewsheds. As previously discussed,

viewsheds accurately denote areas monitored by CCTV; the measurement of crime levels

within these boundaries is a valid metric of CCTV effect (Caplan et al. 2011; Ratcliffe

et al. 2009). However, it is impractical to consider features falling in the surrounding area

of a camera but outside of a viewshed (e.g. a bar across the street or immediately around

the corner) to be unrelated to within-viewshed activity. We thus measured the prevalence

of the environmental features within the ‘‘environmental backcloth’’ (Brantingham and

Brantingham 1981) of camera sites. This method effectively captures the person-space

interaction reported by environmental criminologists (Brantingham and Brantingham

1993; Felson 2002; Taylor and Harrell 1996) as well as scholars in the field of geography

(Freundschuh and Egenhofer 1997; Ittelson 1973).

Operationalizing the environmental backcloth of each camera site was a two-step process.

First, the camera’s maximum visibility (the number of feet from the camera to the furthest

extent of its viewshed) was measured via the ‘‘measurement tool’’ in ArcGIS. A buffer of this

distance was then generated around the camera. ArcGIS’s ‘‘clip’’ function was utilized to

truncate the features of the underlying data layers based upon the outline of the buffer. This

process was repeated for each viewshed included in the analysis. The prevalence of each

feature was measured through a Location Quotient (LQ) controlling for the area of the

environmental backcloth as well as the distribution of the feature across the entirety of the

study area.16 The process differed slightly by the data type. LQs for the point features

controlled for the overall length of street segments, to reflect the geocoding method employed

with this data (to street centerlines) (see Fig. 6). LQs for the polygonal features controlled for

the square footage of the polygons, buffer, and overall study area (see Fig. 7).17

Line-of-Sight

Previous research suggests CCTV coverage and dosage to be related to camera effec-

tiveness (Farrington et al. 2007; Gill and Spriggs 2005). In this sense, three variables

related to camera coverage are included. The first, named ‘‘overlap,’’ identifies the number

of individual cameras comprising the viewshed. To review, several overlapping viewsheds

were merged into singular viewsheds in order to prevent single incidents from being

counted multiple times; the overlap variable identifies whether the viewshed depicts the

15 The CompStat unit informed us that they received this information from the City of Newark’s Office of
Housing Assistance.
16 The final study area excluded the portion of Newark comprised of Newark Liberty Airport and the
(shipping) Port of Newark, which are outside of the Newark Police Department’s jurisdiction. Outside of the
airport and port, the area is almost entirely comprised of highways and vacant land, with activity primarily
taking the form of long-distance motor vehicle traffic with little-to-no pedestrian activity. Due to these
reasons, coupled with the fact that no CCTV cameras were installed in this area, this area was excluded from
the final study area.
17 See Piza (2012: 80–85) for a more in-depth demonstration of the LQ calculation for the environmental
features.
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line-of-sight of a single camera or multiple cameras. Two variables measure visible

obstructions within viewsheds. These variables are the percentage of the overall viewshed

that is blocked by foliage and the percentage of the viewshed that is obstructed by

immovable objects. While the influence of visible obstructions has yet to be empirically

tested, anecdotal evidence suggests it can impede upon the live monitoring of cameras

(Gill et al. 2005, 2006; Keval and Sasse 2010; Smith 2004).

Enforcement Actions

Three variables measure the enforcement actions conducted in viewsheds. The first two

variables measure the proactive use of CCTV: (1) the number of criminal incidents

detected by each camera, and (2) enforcement activity (e.g. arrest, summons, or field

interrogation) in response to said detections. These data were considered measures of the

proactive use of CCTV, in recognition of previous research finding proactive surveillance

Fig. 6 Clip process for point environmental features

Fig. 7 Clip process for polygon environmental features
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activity to be related to crime reduction (La Vigne et al. 2011). Statistically significant

negative regression coefficients would suggest that cameras sites experiencing high levels

of proactive CCTV activity experienced more pronounced reductions of crime levels than

camera sites with lower amounts of CCTV activity. The data were collected from weekly

Video Surveillance Unit (VSU) activity reports, which capture the nature, address, out-

come, and camera site of each CCTV detection. Data from the VSU reports were entered

into a separate database in order to calculate the number of detections and enforcement

actions occurring within each viewshed during their respective 1-year post-installation

periods. The third enforcement variable controls for the potential effect of arrests unrelated

to the surveillance system.18 GIS arrest files, which contain all arrests enacted by the

Newark Police Department, were cross-referenced with VSU reports to identify those

generated by the CCTV unit. The CCTV-generated arrests were removed from the arrest

file, leaving only those arrests unrelated to the surveillance operation. We then conducted a

‘‘spatial join’’ within ArcGIS to identify the number of unrelated arrests that took place

within each viewshed over their respective 1-year post-installation periods.

Camera Design

The camera design variable is a dummy variable identifying each camera as a ‘‘dome’’

camera (1) or not (0) in recognition of previous research that suggests traditionally

designed overt cameras may have decreased deterrent effects compared to semi-covert

‘‘dome’’ cameras (Waples and Gill 2006). For the seven viewsheds that were comprised of

multiple cameras, the average of the dichotomous values was calculated. For example, if a

viewshed is comprised of three dome cameras, the resulting ‘‘dome’’ variable is 1

([1 ? 1?1]/3 = 1). However, if the viewshed is comprised of two dome cameras and one

bullet resistant camera the camera design value would be 0.66 ([1 ? 1?0]/3 = 0.66).

Statistically significant regression coefficients (in either direction) would suggest that one

camera design style produces more of a deterrent effect than the other.

Summary of Variable Distribution

Table 2 provides a summary of the variables. As suggested by the means and standard

deviations, a fair amount of variance exists within each variable. In respect to the

dependent variables, Newark’s CCTV system is comprised of both effective and ineffec-

tive camera sites. For each crime category the number of viewsheds with negative DLQ

values, suggestive of crime decreases, and positive DLQ values, suggestive of crime

increases, is nearly even, which parallels the findings of Ratcliffe et al. (2009) in Phila-

delphia, as well as the findings of Caplan et al. (2011) in Newark.19

Statistical Approach

For the analysis, DLQ values were utilized as dependent variables in ordinary least squares

(OLS) regression models. OLS rests on particular assumptions that many times are not met

18 While total ‘‘enforcement actions’’ are measured in respect to the CCTV operation, observations of
unrelated police activity are restricted to arrests. This is due to city-wide enforcement data being unavailable
for all other enforcement actions (e.g. ‘‘summonses’’) prior to 2009.
19 Given the similarities between Caplan et al. (2011) and the current study, a comparison of their
respective DLQ distributions appears in the ‘‘Appendix’’ section.
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with criminology data (Maxfield and Babbie 2001: 404). Therefore, the analysis began

with a test of key assumptions of OLS, all of which were conducted in Stata 12: normality,

homoscedasticity, proper model specification, and an absence of multicollinearity

(McClendon 1994).

To test normality, a Kolmogorov–Smirnov (K–S) test was conducted on each of the six

dependent variables to identify whether the distribution significantly differed from a

standard normal distribution (Chakravart et al. 1967: 392–394). Five exhibited statistically

insignificant p values, indicative of a normal distribution. The lone exception was robbery

(p = 0.038). Thus, the robbery DLQ variable was squared in order to approximate a

normal distribution. Following the transformation, the p value was insignificant

(p = 0.392).20

Table 2 Statistical summary of dependent and independent variables

Mean SD Min Max # negative (%) # positive (%)

Dependent variables

DLQ overall crime 0.005 0.563 -1.840 1.643 55 (47.01) 62 (52.99)

DLQ violent crime -0.072 1.570 -6.310 2.739 50 (42.74) 62 (52.99)

DLQ property crime -0.043 0.553 -1.739 1.133 58 (49.57) 57 (48.72)

DLQ robbery -0.079 1.719 -6.037 3.548 54 (46.15) 57 (48.72)

DLQ auto theft -0.033 0.607 -2.295 1.570 54 (46.15) 60 (51.28)

DLQ theft from auto -0.067 1.095 -3.676 3.782 61 (52.14) 48 (41.03)

Independent variables

Environmental features

Bars LQ 1.417 2.275 0.000 10.179 – –

Liquor stores LQ 2.863 5.408 0.000 25.724 – –

Corner stores LQ 2.415 3.399 0.000 14.600 – –

General retail shops LQ 4.266 11.604 0.000 73.209 – –

Schools LQ 1.684 3.335 0.000 16.810 – –

Take out LQ 2.459 3.536 0.000 22.582 – –

Transit stops LQ 2.220 1.666 0.000 7.077 – –

Housing LQ 5.253 10.982 0.000 60.806 – –

Parking lots LQ 7.000 11.901 0.000 63.360 – –

Line of sight

Overlap 1.085 0.406 1.000 4.000 – –

Overall % obstructed 17.912 11.501 0.000 55.633 – –

% immovable obstruct 6.452 7.156 0.000 28.447 – –

% foliage obstruct 11.460 10.564 0.000 53.154 – –

Enforcement actions

Detections 6.299 12.545 0.000 99.000 – –

Camera enforcement 1.906 5.674 0.000 55.000 – –

Unrelated arrests 50.453 88.284 0.000 865.000 – –

Camera design

Dome 0.838 0.370 0.000 1.000 – –

20 A ‘‘ladder of powers’’ (Tukey 1977) function performed in STATA 12.0 identified the square trans-
formation as the only procedure to approximate a normal distribution.
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A Cook-Weisberg test of homoscedasticity was conducted through the ‘‘hettest’’

command, with p \ 0.05 rejecting the null hypothesis that variance is homogenous

(Hamilton 2013: 165). The ‘‘linktest’’ command was run to measure the potential presence

of model specification errors. Linktest creates two new variables: ‘‘_hat,’’ the variable of

prediction, and ‘‘_hatsq,’’ the variable of squared prediction. The model is then refit using

these two variables as predictors, with ‘‘_hat’’ expected to be significant since it’s the

predictor variable and ‘‘_hatsq’’ expected to be insignificant because squared predictors

should have no explanatory power if the model is correctly specified (UCLA 2007). Lastly,

we measured the presence of multicollinearity amongst the independent variables by

performing a post hoc calculation of the variance inflation factor (VIF) for each of the

model covariates. We specifically recorded the tolerance of each covariate (defined as

1/VIF), which displays the proportion of the covariate’s variance that is independent of the

other variables (Hamilton 2013: 203). A tolerance value lower than 0.1 suggests that the

covariate is significantly correlated with others in the model (UCLA 2007).

The results of the Kolmogorov–Smirnov normality tests, Cook-Weisberg heterosca-

dacity tests, and the model specification test show that all of the models adhere to the

previously stated OLS assumptions. Furthermore, all tolerance values (1/VIF) are well

above the 0.1 threshold, showing that the covariates do not suffer from multicollinearity.21

Findings

Crime Level Changes in Viewsheds

Tables 3 and 4 display the findings of the statistical analysis. Along with b values, asso-

ciated standard errors and statistical significance, the tables report the coefficient of

determination and statistical power of each model. Since the number of observations

(N = 117) is somewhat low considering the number of covariates (16) we wanted to

ensure that the models were sufficiently powered to detect statistical significance. Five of

the six models exhibited statistical power greater than 0.80, as measured with G*Power

software (Faul et al. 2009), meeting the minimum threshold for statistical power (Britt and

Weisburd 2010). The lone exception was the ‘‘overall crime’’ model, with a power of

0.638. The underpowered nature of this model makes it vulnerable to falsely failing to

reject the null hypothesis (Type II error).

Table 3 displays the findings for the aggregate crime categories: overall crime, violent

crime, and property crime. Environmental features were statistically significant in the

violent crime and property crime models. Bars were statistically significant in the violent

crime model, associated with reduced crime levels. For property crime, retail stores were

significantly associated with crime level increases. Line-of-sight variables were statically

significant in the violent crime model, but not in the expected direction, with immovable

obstructions being associated with a crime decrease. The camera enforcement variable was

statistically significant and associated with reduced crime levels for overall crime and

violent crime.

Table 4 displays the findings for the disaggregate categories: robbery, auto theft, and

theft from auto. Similar to the aggregate categories, each of the disaggregate crimes was

21 Due to space constraints, results of the OLS diagnostic tests are not presented in text, but are available
from the lead author upon request.
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differentially impacted by the environmental features. Bars were associated with reduced

levels of robbery. Schools were associated with increased levels of auto theft. Both corner

stores and retail stores were related to increased levels of theft from auto.

All of the disaggregate categories were influenced by line-of-sight variables. As

observed in the violent crime model, immovable obstructions were associated with crime

decreases in both the robbery and theft from auto models, while immovable obstructions

were associated with increased levels of auto theft. Theft from auto was the only disag-

gregate crime category influenced by enforcement activity; the camera enforcement var-

iable was significantly associated with decreased crime levels.

Displacement and Diffusion of Benefits

The current section explores any potential displacement or diffusion of benefits effects

relative to the CCTV cameras. This analysis includes the catchment zones of all viewsheds

with negative DLQ values, suggestive of a crime reduction. Following the approach uti-

lized in the viewshed creation, overlapping catchment areas were considered as single sites

to prevent single incidents from being counted multiple times. This resulted in a total

number of catchment zones smaller than the total viewsheds exhibiting negative DLQ

Table 3 OLS results for aggregate crime categories (viewsheds)

Variables Overall crime Violent crime Property crime

b SE t b SE t b SE t

Environmental features

Bars -0.045 0.027 -1.710 -0.195** 0.066 -2.950 -0.026 0.025 -1.010

Liquor stores 0.013 0.011 1.190 0.027 0.027 1.020 0.007 0.010 0.660

Corner stores 0.006 0.018 0.330 0.019 0.045 0.430 0.002 0.017 0.090

Retail stores 0.011 0.007 1.660 -0.013 0.017 -0.780 0.019* 0.006 3.010

Schools 0.023 0.017 1.330 0.001 0.044 0.020 0.025 0.017 1.470

Take outs -0.005 0.019 -0.280 0.016 0.046 0.350 -0.016 0.018 -0.890

Transit stops 0.007 0.038 0.180 -0.031 0.095 -0.320 0.000 0.037 0.000

At-risk housing -0.001 0.005 -0.210 0.004 0.014 0.280 -0.001 0.005 -0.130

Parking lots -0.001 0.005 -0.240 0.012 0.012 0.960 -0.003 0.005 -0.550

Line of sight

% immovable

obstruct

-0.004 0.009 -0.480 -0.047* 0.022 -2.140 0.000 0.008 0.020

% foliage obstruct -0.003 0.005 -0.560 -0.024 0.013 -1.780 -0.001 0.005 -0.160

Overlap 0.125 0.135 0.920 0.232 0.339 0.690 0.135 0.130 1.040

Enforcement activity

Detections 0.013 0.008 1.530 0.015 0.021 0.750 0.011 0.008 1.420

Camera enforcement -0.045* 0.020 -2.210 -0.121* 0.051 -2.390 -0.027 0.020 -1.400

Unrelated arrests 0.000 0.001 -0.050 0.000 0.002 0.300 0.000 0.001 -0.770

Camera style

Dome 0.157 0.152 1.040 0.088 0.383 0.230 0.097 0.147 0.660

R-squared (adjusted) 0.122 (-0.018) 0.296 (0.183) 0.161 (0.027)

Power (1-b err prob) 0.638 0.997 0.814

* p \ 0.05; ** p \ 0.01
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values. For example, the displacement analysis of the 55 viewsheds with negative DLQ

values for overall crime was conducted on the 40 catchment zones that resulted from the

aforementioned merging process.

Table 5 provides a breakdown of the catchment zone DLQ values across the six crime

categories. For most crime categories, catchment areas exhibited positive DLQ values,

suggestive of displacement, more frequently than negative DLQ values. The proportion of

catchment zones with positive DLQ values was 10 % greater than those with negative DLQ

values in the overall crime (55 vs. 45 %), violent crime (57 vs. 42 %), and robbery (60 vs.

40 %) categories. This is in contrast to the viewsheds, in which violent crime was the only

category where the proportion of viewsheds with positive DLQ values was 10 % higher

than those with negative DLQ values (52 vs. 42 %). Auto theft was the only category for

which the proportion of catchment zones exhibiting negative DLQ values, suggestive of

diffusion of benefits, was 10 % higher than those with positive DLQ values (57 vs.

42 %).22

Table 4 OLS results for individual crime categories (Viewsheds)

Variables Robbery (squared) Auto theft Theft from auto

b SE t b SE t b SE t

Environmental features

Bars -2.469* 0.983 -2.510 -0.021 0.027 -0.780 -0.040 0.049 -0.820

Liquor stores 0.686 0.396 1.730 0.011 0.011 1.020 -0.003 0.020 -0.150

Corner stores 0.009 0.674 0.010 -0.033 0.019 -1.770 0.072* 0.034 2.120

Retail stores -0.098 0.246 -0.400 0.009 0.007 1.280 .037** 0.012 3.040

Schools 0.444 0.646 0.690 0.042* 0.018 2.360 -0.008 0.032 -0.240

Take outs -0.252 0.687 -0.370 0.006 0.019 0.340 -0.052 0.034 -1.500

Transit stops 0.331 1.409 0.240 -0.017 0.039 -0.430 0.022 0.070 0.310

At-risk housing 0.082 0.201 0.410 -0.002 0.006 -0.420 0.004 0.010 0.370

Parking lots 0.154 0.180 0.860 -0.006 0.005 -1.130 0.002 0.009 0.260

Line of sight

% immovable

obstruct

-0.698* 0.324 -2.160 0.021* 0.009 2.310 -0.037* 0.016 -2.270

% foliage obstruct -0.303 0.196 -1.540 0.000 0.005 -0.090 -0.002 0.010 -0.170

Overlap 1.891 5.021 0.380 0.056 0.139 0.400 0.182 0.251 0.720

Enforcement Activity

Detections 0.128 0.306 0.420 0.002 0.008 0.250 0.026 0.015 1.690

Camera enforcement -0.901 0.752 -1.200 0.010 0.021 0.500 -0.088* 0.038 -2.350

Unrelated arrests -0.012 0.025 -0.500 0.000 0.001 -0.710 -0.001 0.001 -0.430

Camera style

Dome -1.854 5.677 -0.330 0.168 0.158 1.070 -0.081 0.284 -0.280

R-squared (adjusted) 0.206 (0.079) 0.203 (0.076) 0.203 (0.075)

Power (1-b err prob) 0.934 0.929 0.923

* p \ 0.05; ** p \ 0.01

22 While Caplan et al. (2011) measured displacement on an aggregate level they did not calculate dis-
placement measures for the individual viewsheds. Therefore, we are unable to compare the displacement
findings with the earlier work of Caplan et al. (2011).
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Similar to the main analysis, we sought to test the influence of the independent variables

on crime changes within the catchment zones to identify factors related to the occurrence of

displacement and diffusion of benefits around CCTV cameras. The environmental features

were measured within the catchment area. ‘‘Bars,’’ for example, refers to the prevalence of

bars (measured through a location quotient) in the catchment zone, not the viewshed. The

remaining independent variable categories (line-of-sight, camera design and quantity,

enforcement activity, and pre-installation crime levels) are camera specific and refer to the

actual viewshed. Similar to the viewsheds, merged catchment zones differed slightly in how

the ‘‘dome’’ variable was measured (see the ‘‘camera design’’ subsection of the ‘‘inde-

pendent variables’’ section).

It should be noted that the low number of observations severely hampered the utility of

the OLS models. For example, the overall crime model included 40 observations (catch-

ment areas) and 16 covariates, translating to a rate of 2.5 events per predictor variable

(EPV). Overall, the EPV of the catchment models ranged from 2.18 (violent crime and

robbery) to 2.62 (auto theft and theft from auto). While previous simulation studies have

demonstrated that models with EPVs as low as 5 are as statistically rigorous as models with

as many as 16 EPV (Vittinghoff and McCulloch 2007) the EPV in our catchment models

adds uncertainty to the results due to overfitting (Babyak 2004). The low EPV also pre-

sented issues regarding the model diagnostics, which we controlled for when possible. For

example, we incorporated Heteroscedasticity-Consistent Standard Error estimators—spe-

cifically, MacKinnon and White’s (1985) HC3 estimator—to control for observed heter-

oscedasticity in the robbery, auto theft, and theft from auto models. Other violations were

unable to be corrected. Specifically, none of the dependent variables were normally dis-

tributed and ‘‘ladder of power’’ tests confirmed that no transformation method (e.g.

squared, log, etc.) approximated a normal distribution. Thus, we present the catchment

model findings as exploratory rather than confirmatory in nature.

Table 6 displays the results of the OLS models of the aggregate crime categories. Two

covariates achieved statistical significance across the three models. Retail stores were

associated with lower levels of violent crime in catchment zones while arrests unrelated to

CCTV within viewsheds were associated with increased crime levels in the overall crime

model. No covariates achieved statistical significance in the disaggregate crime category

models.

Discussion of Findings

Statistically significant variables varied by model, suggesting the ideal context for CCTV

may vary according to crime type. This was especially the case in respect to the envi-

ronmental features. Five of the six models had at least one statistically significant envi-

ronmental feature, with results in four models suggesting crime increases. Bars were the

only environmental feature associated with decreased crime levels, achieving statistical

significance in the violent crime and robbery models. While bars are commonly identified

as criminogenic, the introduction of increased guardianship within and around these

locations has shown to reduce incidents of crime and disorder (Felson 1995; Madensen and

Eck 2008). While such guardianship has typically taken the form of human agents, such as

place mangers, CCTV may have exerted similar influence in the surrounding areas of bars.

Schools were associated with increased levels of auto theft while retail stores and corner

stores were associated with increased levels of theft from auto. These findings regarding

auto theft and theft from auto point to an obvious question; why was CCTV associated with
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increased crime levels when nearby schools, retail stores, and corner stores? A common

argument is that CCTV operators may observe crime that may have otherwise gone

unobserved (and unreported), which can cause an increase in reported crime whether or not

actual crime levels changed (Winge and Knutsson 2003). However, since Newark’s CCTV

detections are mostly comprised of disorderly behavior and drug activity, with detections

of Part 1 crime incidents a rarity (see Piza 2012: 53), this explanation does not apply in this

case. Others have argued that CCTV can increase crime through more indirect means, such

as by decreasing the vigilance of the public or reducing natural surveillance as fewer

people use CCTV-covered areas due to privacy concerns (Gill and Turbin 1998). Perhaps

characteristics of the aforementioned environs heighten such effects. While the necessary

data to explore such hypotheses was unavailable to us, this is certainly an important issue

worthy of future research.

Somewhat counterintuitive findings were observed in respect to the line-of-sight vari-

ables. Immovable visible obstructions were associated with increased levels of auto theft,

suggesting that offenders may have taken advantage of opportunities to commit crimes in

areas out of view of cameras (and camera operators) (Waples and Gill 2006). Conversely,

immovable obstructions were associated with crime decreases in the violent crime, rob-

bery, and theft from models. Perhaps the differing influence of obstructions can be

explained by the crimes’ differing natures. Particularly, auto theft takes longer to commit

than violent crime, robbery, and theft from auto; since these crimes take place quickly, the

ability to hide behind an immovable obstruction may not afford much benefit to this

offender population. However, while this may explain the lack of significant theft from

auto and robbery increases, it does not explain why decreased levels of these crimes were

associated with immovable obstructions. Perhaps areas obstructed from view were not

conducive to violent crime, robbery, or theft from auto, allowing operators to direct their

attention towards specific places at higher risk of theft from auto. Whatever the reason, we

caution against the interpretation that high levels of immovable obstructions heighten the

effect of CCTV.

Findings relative to camera enforcement support the recent work of the Urban Institute

(La Vigne et al. 2011), which suggests that CCTV effect depends largely on the level to

which the cameras are integrated into the police function. ‘‘Camera enforcement’’ was

associated with decreased levels of overall crime, violent crime, and theft from auto. The

fact that camera enforcement was not significant across all of the models, however, speaks

to the context-specific nature of CCTV. Research has shown CCTV to be most effective

against incidents of property crime, specifically auto theft (Caplan et al. 2011; Farrington

et al. 2007; Gill and Spriggs 2005; Welsh and Farrington 2009). It may be that formal

surveillance via conspicuous camera presence may be enough to deter these crimes, with

Table 5 Number of viewsheds with negative DLQ values and resulting catchment zones

Crime category Viewsheds with
neg. DLQ

Catchment
zones

Catchment zones
with neg. DLQ

Catchment zones
with pos. DLQ

Overall crime 55 40 18 (45.00 %) 22 (55.00 %)

Violent crime 50 35 15 (42.85 %) 20 (57.14 %)

Robbery 54 35 14 (40.00 %) 21 (60.00 %)

Property crime 58 41 19 (46.34 %) 22 (53.65 %)

Auto theft 54 42 24 (57.14 %) 18 (42.85 %)

Theft from auto 61 42 21 (50.00 %) 21 (50.00 %)
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proactive enforcement being less crucial. Theft from auto offenders, on the other hand,

may be more influenced by proactive enforcement since they typically operate on foot and

are less likely to quickly flee the scene of a crime. In respect to violence, proactive

enforcement has been shown to reduce the occurrence of such crime (Braga et al. 1999;

MacDonald 2002; Sherman and Rogan 1995), explaining the negative correlation between

violence and proactive camera enforcement. Conversely, robbery was not significantly

influenced by camera enforcement, which is interesting given it is one of three crime types

(along with murder and shootings) to comprise the ‘‘violent crime’’ category. This may be

because robbers are more likely to offend in ‘‘risky’’ areas than other violent offenders

since they are primarily motivated by monetary gain (Guerette et al. 2005). Piza and

O’Hara’s (2012) recent study suggests this may be especially true in Newark, with a drastic

increase in police presence within a quarter-mile area reducing overall violence but having

no effect on robbery.

Conclusions

This study sought to identify precise factors related to CCTV camera effect. However, like

most research endeavors, the current study suffers from specific limitations that should be

Table 6 OLS results for aggregate crime categories (catchment zones)

Variables Overall crime Violent crime Property crime

b SE t b SE t b SE t

Environmental features

Bars -0.163 0.130 -1.250 -0.018 0.309 -0.060 -0.114 0.291 -0.390

Liquor stores -0.105 0.093 -1.120 -0.151 0.155 -0.980 -0.212 0.237 -0.890

Corner stores 0.077 0.135 0.570 -0.057 0.257 -0.220 0.128 0.368 0.350

Retail stores -0.007 0.066 -0.100 -1.050* 0.415 -2.530 -0.078 0.136 -0.580

Schools -0.130 0.114 -1.140 0.042 0.229 0.180 -0.195 0.230 -0.850

Take outs -0.097 0.135 -0.720 -0.003 0.303 -0.010 -0.142 0.281 -0.510

Transit stops -0.054 0.278 -0.190 -0.145 0.382 -0.380 0.282 0.571 0.490

At-risk housing -0.040 0.131 -0.310 0.139 0.302 0.460 -0.072 0.281 -0.260

Parking lots 0.180 0.099 1.820 0.060 0.395 0.150 0.176 0.196 0.900

Line of sight

% immovable obstruct 0.004 0.038 0.110 0.020 0.080 0.250 0.044 0.087 0.510

% foliage obstruct 0.002 0.003 0.620 0.000 0.004 0.080 0.029 0.039 0.750

Overlap -0.540 0.403 -1.340 0.954 1.843 0.520 0.130 0.345 0.380

Enforcement activity

Detections -0.058 0.056 -1.040 -0.191 0.130 -1.470 -0.017 0.145 -0.120

Camera enforcement 0.197 0.135 1.460 0.403 0.238 1.690 -0.055 0.438 -0.130

Unrelated arrests 0.003* 0.002 2.240 0.004 0.012 0.320 0.002 0.004 0.440

Camera style

Dome -0.003 0.666 0.000 1.260 1.655 0.760 0.022 1.447 0.010

R-squared (Adj.) 0.49 (0.136) 0.529 (0.110) 0.181 (-0.365)

Power (1-b err prob) 0.894 0.843 0.192

* p \ 0.05
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mentioned. It should be noted that the b coefficients across the OLS models were small for

all covariates. This is partly a byproduct of the dependent variable; the average DLQ values

were well below 1 for all models (see Table 2). Such issues have also surfaced in previous

research that quantified the micro-level effect of individual camera sites. For example,

success measures of individual camera sites in Philadelphia ranged from a low of -0.0042

to a high of 0.0023 (Ratcliffe et al. 2009: 760–764). When such small values are utilized as

dependent variables the resulting coefficients of model covariates are likely to be similarly

small. However, the small coefficients may also suggest that the effects of the covariates on

crime levels were somewhat modest. Indeed, a small proportion of the covariates achieved

statistical significance. Furthermore, each model generated relatively low r2 values,

meaning most of the variance in the dependent variables went unexplained. Thus, we

advocate for replication of this study in other jurisdictions to further explore, and improve

upon, the identification of the determinant factors of CCTV effect.

Limitations were also present in other aspects of the methodology. For one, viewshed

creation occurred during the months of April through September, which may have

somewhat compromised the digitizing of visible obstructions. While researchers accurately

captured the presence of foliage obstructions during these warm-weather months, in certain

instances we were unable to determine if any immovable obstructions (e.g. a bus shelter or

telephone pole) were blocked from view by the foliage. This may have resulted in

immovable obstructions being underrepresented in our models. We were also unable to

control for changes in the land use of facility types that may have occurred during the

intervention period, a problem commonly faced in environmental criminology studies (De

Souza and Miller 2012). In addition, the environmental features included in this study

represent but a sample of those that may influence CCTV effect. Indeed, other researchers

have faced similar challenges in selecting which variables to include in tests of land use

influence on crime (see Bernasco and Block 2011). The covariates additionally did not

include a category that controlled for human-related aspects of CCTV, such as operator

decision making, that may influence detection and enforcement levels around certain

cameras. Despite the likely omission of important variables from our models, we decided

to only utilize the readily available covariates in order to maintain statistical power and

protect against model overfitting. Similarly, our analysis of displacement was severely

hampered by the very small number of catchment areas. We encourage the inclusion of

additional covariates and a rigorous test of displacement in future research when a larger

‘‘N’’ is available.
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Appendix

The reader may be interested in how the DLQ distribution of the current study compares to

that of Caplan et al. (2011). However, the differing scope of these works makes com-

parisons somewhat limited. Specifically, auto theft and theft from auto are the only two

crime types included in both studies. In addition, Caplan et al. (2011) analyzed 73 of
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Newark’s 146 cameras that were installed at the time. Therefore, we are restricted to

discussing the auto theft and theft from auto findings for the cameras included in both

studies.

Thirty-four viewsheds experienced reduced levels of auto theft in the Caplan et al.

study, with 35 auto theft reductions being observed in the current study. Differences were

more pronounced in respect to theft from auto; 41 viewsheds exhibited reduced crime

levels in the Caplan et al. study while only 35 exhibited a reduction in the current study.

These differences are likely due to the differing methodologies of the two studies, spe-

cifically in regards to the LQ formulas and the units of analysis. LQs employed by Caplan

et al. controlled for city-wide geography and crime totals while precinct-level data was

used in the current study. In addition, while the current study excluded incidents in the

surrounding catchment zone from the LQ formula, Caplan et al. included such incidents.

Finally, the different approaches to viewshed creation resulted in units of analysis sig-

nificantly different in size, as confirmed via an independent samples t test (p \ 0.01). The

average area of viewsheds in the Caplan et al. study was more than twice the size of our

viewsheds (268,635 vs. 112,615 ft2). These methodological differences mean that mea-

sures of success are not uniform across studies. Therefore, comparison of findings may be

more of an ‘‘apples-to-oranges’’ situation than one may expect given the identical study

setting.

References

Armitage R (2002) To CCTV or not? A review of current research into the effectiveness of CCTV systems
in reducing crime. National Association for the Care and Resettlement of Offenders, London

Babyak M (2004) What you see may not be what you get: a brief, nontechnical introduction to overfitting in
regression-type models. Psychosom Med 66:411–421

Bernasco W, Block R (2011) Robberies in Chicago: a block-level analysis of the influence of crime
generators, crime attractors, and offender anchor points. J Res Crime Delinq 48(1):33–57

Block R, Block C (1999) The Bronx and Chicago: street robbery in the environs of rapid transit stations. In:
Goldsmith V, McGuire PG, Mollenkopf JH, Ross TA (eds) Analyzing crime patterns: frontiers of
practice. Sage, Thousand Oaks, CA

Bowers K, Johnson J (2003) Measuring the geographical displacement and diffusion of benefit effects of
crime prevention activity. J Quant Criminol 19(3):275–301

Braga A, Weisburd D, Waring E, Mazerolle L, Spelman W, Gajewski F (1999) Problem-oriented policing in
violent crime places: a randomized controlled experiment. Criminology 37(3):541–580

Braga A, Hureau D, Papachristos A (2011) The relevance of micro places to citywide robbery trends: a
longitudinal analysis of robbery incidents at street corners and block faces in Boston. J Res Crime
Delinq 48(1):7–32

Brantingham PJ, Brantingham PL (1981) Environmental criminology. Sage, Beverly Hills, CA
Brantingham PL, Brantingham PJ (1993) Nodes, paths and edges: consideration on the complexity of crime

and the physical environment. J Environ Psychol 13:3–28
Brantingham PJ, Brantingham PL (1995) Criminality of place: crime generators and crime attractors. Eur J

Crim Policy Res 3(3):1–26
Brantingham PL, Brantingham PJ (1998) Mapping crime for analytic purposes: location quotients, counts

and rates. In: Weisburd D, McEwen T (eds) Crime mapping and crime prevention. Crime prevention
studies, vol 8, pp 263–288

Britt C, Weisburd D (2010) Statistical power. In: Piquero A, Weisburd D (eds) Handbook of quantitative
criminology. Springer, New York, NY

Brown B (1995) CCTV in town centres: three case studies. Crime detection and prevention series, paper 68.
Home Office, London

Cameron A, Kolodinski E, May H, Williams N (2008) Measuring the effects of video surveillance on crime
in Los Angeles. Report prepared for the California Research Bureau. USC School of Policy, Planning,
and Development

J Quant Criminol

123

Author's personal copy



Caplan J (2011) Mapping the spatial influence of crime correlates: a comparison of operationalization
schemes and implications for crime analysis and criminal justice practice. Cityscape 13(3):57–83

Caplan J, Kennedy L, Petrossian G (2011) Police-monitored cameras in Newark, NJ: a quasi-experimental
test of crime deterrence. J Exp Criminol 7(3):255–274

Chainey S (2000) Optimizing closed-circuit television use. In: La Vigne N, Wartell J (eds) Crime mapping
case studies: successes in the field, vol 2. Police Executive Research Forum, Washington, DC

Chakravart I, Laha R, Roy J (1967) Handbook of methods of applied statistics, vol 1. Wiley, Hoboken, NJ
Clarke R, Weisburd D (1994) Diffusion of crime control benefits. In: Clarke R (ed) Crime prevention

studies, vol 2. Criminal Justice Press, Monsey, NY, pp 165–183
Cook T, Campbell D (1979) Quasi-experimentation: design and analysis issues for field settings. Rand

McNally, Chicago, IL
De Souza E, Miller J (2012) Homicide in the Brazilian favela: does opportunity make the killer? Br J

Criminol 52:786–807
Ditton J, Short E (1999) Yes it works. No it doesn’t: comparing the effects of open-street CCTV in two

adjacent Scottish town centres. In: Tilley N, Painter K (eds) Surveillance of public space: CCTV, street
lighting and crime prevention. Crime prevention studies, vol 10. Criminal Justice Press, Monsey, NY

Eck J (1993) The threat of crime displacement. Crim Justice Abstr 253:527–546
Eck J (1994) Drug markets and drug places: a case-controlled study of spatial structure of illicit dealing.

Unpublished Ph.D. Dissertation, University of Maryland, College Park
Eck J (2002) Preventing crime at places. In: Sherman L, Farrington D, Welsh B, Mackenzie D (eds)

Evidence-based crime prevention. Routledge, New York, NY, pp 241–294
Eck J, Weisburd D (eds) (1995) Crime and place. Crime prevention studies, vol 4. Criminal Justice Press,

Monsey, NY
Farrington D, Gill M, Waples S, Argomaniz J (2007) The effects of closed-circuit television on crime: meta-

analysis of an English national quasi-experimental multi-site evaluation. J Exp Criminol 3:21–28
Faul F, Erdfelder E, Buchner A, Lang A (2009) Statistical power analyses using G*Power 3.1: tests for

correlation and regression analyses. Behav Res Methods 41(4):1149–1160
Felson M (1995) Those who discourage crime. In: Eck J, Weisburd D (eds) Crime and place: crime

prevention studies, vol 4. Police Executive Research Forum, Washington, DC
Felson M (2002) Crime and everyday life, 3rd edn. Sage, Thousand Oaks, CA
Freundschuh S, Egenhofer M (1997) Human conceptions of spaces: implications for GIS. Trans GIS

2(4):361–375
Gill M, Spriggs A (2005) Assessing the impact of CCTV. Home Office Research Study No. 292, London
Gill M, Turbin V (1998) CCTV and shop theft: towards a realistic evaluation. In: Norris C, Moran J,

Armstrong G (eds) Surveillance, closed circuit television, and social control. Ashgate, Brookfield, VT
Gill M, Spriggs A, Allen J, Hemming M, Jessiman P, Kara D (2005) Control room operation: findings form

control room observations. Home Office, London
Gill M, Rose A, Collins K, Hemming M (2006) Redeployable CCTV and drug-related crime: a case of

implementation failure. Drugs Educ Prev Policy 13(5):451–460
Groff E, La Vigne N (2001) Mapping an opportunity surface of residential burglary. J Res Crime Delinq

38:257–278
Guerette R, Steinus V, McGloin J (2005) Understanding offending specialization and versatility: a re-

application of the rational choice perspective. J Crim Justice 33(1):77–87
Hamilton L (2013) Statistics with STATA. Updated for version 12. Cengage Brooks/Cole, Boston, MA
Ittelson W (1973) Environment perception and contemporary perceptual theory. In: Ittelson W (ed) Envi-

ronment and cognition. Seminar, New York, pp 1–19
Johnson S, Bowers K, Birks D, Pease K (2009) Predictive mapping of crime by ProMap: accuracy, units of

analysis, and the environmental backcloth. In: Weisburd D, Bernasco W, Bruinsma G (eds) Putting
crime in its place: units of analysis in geographic criminology. Springer, New York

Kennedy L, Caplan J, Piza E (2011) Risk clusters, hotspots, and spatial intelligence: risk terrain modeling as
an algorithm for police resource allocation strategies. J Quant Criminol 27(3):339–362

Keval H, Sasse A (2010) ‘‘Not the usual suspects’’: a study of factors reducing the effectiveness of CCTV.
Secur J 23(2):134–154

King J, Mulligan D, Raphael S (2008) CITRIS Report: the San Francisco community safety camera pro-
gram. An evaluation of the effectiveness of San Francisco’s community safety cameras. Research in
the Interest of Society. Center for Information Technology Research in the Interest of Society, Uni-
versity of California, Berkeley

La Vigne N, Lowry S (2011) Evaluation of camera use to prevent crime in commuter parking lots: a
randomized controlled trial. Urban Institute, Justice Policy Center, Washington, DC

J Quant Criminol

123

Author's personal copy



La Vigne N, Lowry S, Markman J, Dwyer A (2011) Evaluating the use of public surveillance cameras for
crime control and prevention. US Department of Justice, Office of Community Oriented Policing
Services. Urban Institute, Justice Policy Center, Washington, DC

Lynch K (1960) Image of the city. MIT Press, Cambridge, MA
MacDonald J (2002) The effectiveness of community policing in reducing urban violence. Crime Delinq

48:592–618
MacKinnon J, White H (1985) Some heteroscedasticity consistent covariance estimators with improved

finite sample properties. J Econ 29:53–57
Madensen T, Eck J (2008) Violence in bars: exploring the impact of place manager decision-making. Crime

Prev Community Saf 10(2):111–125
Maxfield M, Babbie E (2001) Research methods for criminal justice and criminology, 3rd edn. Wadsworth/

Thompson Learning, Belmont, CA
Mazerolle L, Hurley D, Chamlin M (2002) Social behavior in public space: an analysis of behavioral

adaptations to CCTV. Secur J 15(3):59–75
McClendon M (1994) Multiple regression and causal analysis. F. E. Peacock Publishers, Itasca, IL
Myers P (2002) The management of identity in bodegas: stigma and microeconomics in Brooklyn. J Ethn

Subst Abuse 1(3):75–93
Norris C, Armstrong G (1999) CCTV and the social structuring of surveillance. In: Tilley N, Painter K (eds)

Surveillance of public space: CCTV, street lighting and crime prevention. Crime prevention studies,
vol 10. Criminal Justice Press, Monsey, NY

Norris C, McCahill M (2006) CCTV: beyond penal modernism? Br J Criminol 46:97–118
Oberwittler D, Wikström P (2009) Why smaller is better: advancing the study of the role of behavioral

contexts in crime causation. In: Weisburd D, Bernasco W, Bruinsma G (eds) Putting crime in its place:
units of analysis in geographic criminology. Springer, New York

Phillips C (1999) A review of CCTV evaluations: crime reduction effects and attitudes towards its use. In:
Tilley N, Painter K (eds) Surveillance of public space: CCTV, Street lighting and crime prevention.
Crime prevention studies, vol 10. Criminal Justice Press, Monsey, NY

Piza E (2012) Identifying the ideal context for CCTV camera placement: an analysis of micro-level features.
Doctoral Dissertation submitted to the Graduate School-Newark, Rutgers, The State University of New
Jersey

Piza E, O’Hara B (2012) Saturation foot-patrol in a high-violence area: a quasi-experimental evaluation.
Justice Q. Advance online publication. doi:10.1080/07418825.2012.668923

Piza E, Caplan J, Kennedy L (2012) Is the punishment more certain? An analysis of CCTV detections and
enforcement. Justice Q. Advance online publication. doi:10.1080/07418825.2012.723034

Ratcliffe J (2006) Video surveillance of public places. Problem-oriented guides for police. Response guide
series. Guide No. 4. US Department of Justice Office of Community Oriented Policing Services. Center
for Problem-Oriented Policing

Ratcliffe J (2010) Crime mapping: spatial and temporal challenges. In: Weisburd D, Piquero A (eds)
Handbook of quantitative criminology. Springer, New York, NY

Ratcliffe J (2012) The spatial extent of criminogenic places: a changepoint regression of violence around
bars. Geogr Anal 44:302–330

Ratcliffe J, Taniguchi T, Taylor R (2009) The crime reduction effects of public CCTV cameras: a multi-
method spatial approach. Justice Q 26(4):746–770

Roncek D (2000) Schools and crime. In: Goldsmith V, McGuire P, Mollenkopf J, Ross A (eds) Analyzing
crime patterns: frontiers of practice. Sage, Thousand Oaks, CA, pp 153–165

Sarno C, Hough M, Bulos M (1999) Developing a picture of CCTV in Southwark town centres: final report.
Criminal Policy Research Unit, South Bank University, London

Scott M, Dedel K (2006) Assaults in and around bars, 2nd edn. Problem-Oriented Guides for Police.
Problem-specific Guides Series. Guide No. 4. US Department of Justice, Office of Community Ori-
ented Policing Services, Center for Problem-Oriented Policing, Washington, DC

Sherman L (1990) Police crackdowns: initial and residual deterrence. In: Tonry M, Morris N (eds) Crime
and justice: a review of research, vol 12. University of Chicago Press, Chicago, pp 1–48

Sherman L, Rogan D (1995) Effects of gun seizures on gun violence: ‘hot spots’ patrol in Kansas City.
Justice Q 12:673–694

Sivarajasingam V, Shepherd J, Matthews K (2003) Effect of urban closed circuit television on assault injury
and violence detection. Inj Prev 9:312–316

Smith G (2004) Behind the scenes: examining constructions of deviance and informal practices among
CCTV control room operators in the UK. Surveill Soc 2(2/3):376–395

Smith M, Clarke R (2000) Crime and public transport. Crime Justice 27:169–233

J Quant Criminol

123

Author's personal copy

http://dx.doi.org/10.1080/07418825.2012.668923
http://dx.doi.org/10.1080/07418825.2012.723034


Squires P (2000) CCTV and crime reduction in Crawley. Health and Social Police Research Center,
Brighton

Stucky T, Ottensmann J (2009) Land use and violent crime. Criminology 47(4):1223–1264
Taylor R, Harrell A (1996) Physical environment and crime. National Institute of Justice, Washington, DC
Tukey J (1977) Exploratory data analysis. Addison-Wesley, Reading, MA
UCLA (2007) Chapter 2: regression diagnostics. In: Stata web books: regression with Stata. University of

California Los Angeles: Academic Technology Services, Statistical Consulting Group
US Census Bureau (2011). Quick facts from US Census Bureau. Retrieved on 12 March 2011 from

http://quickfacts.census.gov
Vittinghoff E, McCulloch C (2007) Relaxing the rule of ten events per variable in logistic and cox

regression. Am J Epidemiol 165(6):710–718
Waples S, Gill M (2006) The effectiveness of redeployable CCTV. Crime Prev Community Saf 8:1–16
Weisburd D, Green L (1995) Measuring intermediate spatial displacement: methodological issues and

problems. In: Eck J, Weisburd D (eds) Crime and place: crime prevention studies, vol 4. Criminal
Justice Press, Monsey, NY, pp 349–361

Weisburd D, Morris N, Ready J (2008) Risk-focused policing at places: an experimental evaluation. Justice
Q 25(1):163–200

Welsh B, Farrington D (2002) Crime prevention effects of closed circuit television: a systematic review.
Home Office, London (Research Study No. 25)

Welsh B, Farrington D (2007) Closed-circuit television surveillance and crime prevention: a systematic
review. National Council for Crime Prevention, Stockholm

Welsh B, Farrington D (2009) Public area CCTV and crime prevention: an updated systematic review and
meta-analysis. Justice Q 26(4):716–745

Winge S, Knutsson J (2003) An evaluation of the CCTV scheme at Oslo central railway station. Crime Prev
Community Saf Int J 5(3):49–59

Zanin N, Shane J, Clarke R (2004) Reducing drug dealing in private apartment complexes in Newark, NJ. A
final report to the US Department of Justice, Office of Community Oriented Policing Services on the
Field Applications of the Problem-Oriented Guides for Police Project

J Quant Criminol

123

Author's personal copy

http://quickfacts.census.gov

	Analyzing the Influence of Micro-Level Factors on CCTV Camera Effect
	Abstract
	Objectives
	Methods
	Results
	Conclusions

	Introduction
	Review of Relevant Literature
	The ‘‘Mixed’’ Effect of CCTV and the Influence of Methodology
	Towards Explaining the Varying Effect of CCTV
	Literature Review Summary and Scope of the Current Study

	Research Setting
	Methodology
	Units of Analysis
	Dependent Variable: Camera Effect on Crime
	Independent Variables
	Environmental Features
	Line-of-Sight
	Enforcement Actions
	Camera Design
	Summary of Variable Distribution

	Statistical Approach

	Findings
	Crime Level Changes in Viewsheds
	Displacement and Diffusion of Benefits

	Discussion of Findings
	Conclusions
	Acknowledgments
	Appendix
	References


