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Understanding how social and environmental factors contribute to the spatio-temporal

distribution of criminal activities is a fundamental question in modern criminology. Thanks

to the development of statistical techniques such as Risk Terrain Modeling (RTM), it is

possible to evaluate precisely the criminogenic contribution of environmental features

to a given location. However, the role of social information in shaping the distribution

of criminal acts is largely understudied by the criminological research literature. In this

paper we investigate the existence of spatio-temporal correlations between successive

robbery events, after controlling for environmental influences as estimated by RTM.

We begin by showing that a robbery event increases the likelihood of future robberies

at and in the neighborhood of its location. This event-dependent influence decreases

exponentially with time and as an inverse function of the distance to the original event.

We then combine event-dependence and environmental influences in a simulation model

to predict robbery patterns at the scale of a large city (Newark, NJ). We show that this

model significantly improves upon the predictions of RTM alone and of a model taking

into account event-dependence only when tested against real data that were not used to

calibrate either model. We conclude that combining risk from exposure (past event) and

vulnerability (environment), following from the Theory of Risky Places, when modeling

crime distribution can improve crime suppression and prevention efforts by providing

more accurate forecasting of the most likely locations of criminal events.

Keywords: crime forecasting, risk terrain modeling, event dependence, dynamical systems, vulnerability and

exposure, robbery

INTRODUCTION

Recent advances in the spatial analysis of crime strongly affected the ways in which scholars
and practitioners consider the origins and dispersion of crime. Hotspot mapping [1] and near
repeat analysis [2] have allowed police to more efficiently target criminogenic places. Analyses of
the physical contexts for crime was pioneered in criminology by Brantingham and Brantingham
[3], who considered the underlying social and physical “fabric” or environmental backcloth as a
framework for action. More recently, Caplan and Kennedy [4] proposed Risk Terrain Modeling
(RTM) as a spatial analytical technique for empirical study of crime distribution. Resulting risk
terrain maps show where certain crime events are statistically more likely to occur based on
certain environmental vulnerabilities at micro places [4–7]. This technique considers the effects of
multiple factors on creating distinct, identifiable areas that are conducive to crime, but emphasizes
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the importance of environmental characteristics on the attraction
of motivated offenders and the emergence, persistence, and
desistance of crime [4–6]. For each place, it produces a risk score,
that is a measure of the clustering of environmental risk factors,
and can be used to forecast where crime will occur and (possibly)
cluster over a period of time.

Spatial analysis—as it is used in the criminological research
literature—often ignores the mechanism through which
disconnected offenders cluster in space and time despite a
seeming lack of deliberate coordination of activities. For
instance, Sherman et al. [1] found that up to 50% of crime is
produced at 3% of city locations. While Spelman [8] concluded
that the statistical concentration of crime at places may be due
to random and often temporary fluctuations in crime events,
[9] noted that, even after correcting for such fluctuations, the
worst locations accounted for a disproportionately high number
of crime incidents. It appears as though, through independent
action, offenders ultimately converge at the same places over
given periods of time to commit similar types of crimes. If this is
the case, why is this so, and how do offenders know where to go?

A possible answer comes from the concept of near repeat
victimization that states that a criminal incident increases the
likelihood that a nearby location or individual will be targeted
in a subsequent incident [10]. This can result from either the
same perpetrator repeating a crime in a location where it has
been successful, or from new perpetrators encouraged directly
(e.g., by a member of the same gang) or indirectly (e.g., by traces
indicative of a successful event) by the first one. This has the
potential of creating a positive feedback loop, with subsequent
criminal events in what are defined as risky places—if close
enough in space and time - increasing further the probability
of additional events clustering in the same area, and so on
Kennedy et al. [11]. This is described in the Theory of Risky
Places [12], where the vulnerability that comes from being in high
risk locations, combined with the exposure to offenders, leads to
a greater probability of crime occuring.

While this concept is fairly recent in criminology, it is
well-known in the scientific literature on collective behavior
in biological systems. Similar feedback loops driven by past
events and social information have been found to create
clustering in unicellular organisms, insects, fish, birds, and
mammals [13–15], even in uniform environmental conditions.
However the final location of the cluster is highly dependent
on the structure of the environment: clusters are more likely
to originate at attractive places for the organisms, and the
positive feedback process will promote the disproportionate
concentration of individuals at some of the attracting places
only (sometimes at a single one) while others will be
abandoned [13, 16–18]. In addition, once this process has
reached its stable state, the probability of starting a new
cluster elsewhere—even at another attractive location - is low
[13].

The striking parallel between the mechanisms of crime
hotspot formation and those of clustering in social animals
suggests that crime suppression and prevention efforts would
strongly benefit from better understanding the combined
effects of the social and physical environments in which

offenders operate. For this purpose, we propose here to
combine tools for the spatial analysis of crime with methods
for measuring and modeling social influence in animal
groups, with the goal of improving methods for forecasting
crime distribution. In particular we will use RTM as a
tried and tested method to identify environmental predictors
of criminal events; we will also use simulation methods
to determine spatio-temporal correlations between successive
events, after controlling for environmental effects. Finally, we
will show that combining event-dependent and environmental
influences provides improvement in forecasting changes in crime
distribution over purely spatial methods (e.g., RTM) or methods
based on modeling near repeat victimization only.

MATERIALS AND METHODS

Data
Crime Data

This study selectively focuses on street robberies, or robberies
that occur at outdoor public spaces (e.g., streets, sidewalks,
parking lots, lots/yards in front of commercial dwellings)
between 2009 and 2012 in Newark, New Jersey (6,888 recorded
events). The robbery data were acquired from the public records
of the Newark Police Department (NPD). They only contain
the time, location and nature of criminal offenses without
identifying information on either the perpetrators or their
victims, and therefore an ethics approval was not required as
per institutional and national guidelines. Adopting the FBI’s
UCR Part I crime definitions, the NPD defines robbery as
“the taking or attempting to take anything from the care,
custody, or control of a person or persons by force or threat
of force or violence and/or by putting the victim in fear”
[19]. The robbery dataset includes each incident’s longitude and
latitude coordinates, as well as the date (e.g., 07.28.2010), day
(e.g., Monday or Saturday), and hour (0–23. where 0 denotes
12 a.m.) of occurrence. For the analyses, Newark was modeled
as a contiguous grid of equally sized cells the length of about
half a city block (the mean blockface length is approximately
137.77m). Each incident was therefore associated with the
68.88m by 68.88m cell containing its longitude and latitude
coordinates.

Land Use Data

The independent variables (risk factors) of the risk terrain
model were the operationalized spatial influences of land use
features in Newark; the following 20 criminogenic features
were included for testing in the RTM analysis: packaged liquor
stores, take-out restaurants, gas stations, college campuses,
parks, convenience stores, light rail stops, eat-in restaurants,
foreclosed properties, parking garages, pawn shops, gyms and
health clubs, grocery stores, recreation centers, at-risk housing,
vacant properties, laundromats, bars, known drug markets, and
schools. These data were acquired from the NPD Compstat unit
or from InfoGroup, a lead provider of verified business data in
the U.S.

All land use data coordinates were converted to cell
coordinates matching the spatial coordinates of the crime data.
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Risk Terrain Map
A risk terrain map represents the risk of a criminal event
occurring at a location given the land use features of this location
(see section Land Use Data above for a list of the land use
features tested in this study) and relative to all the other locations
considered in the analysis (all cells have approximately the size of
half city blocks in Newark in this study). RTM is used to identify
the relative influence of each land use feature on the occurrence
of criminal events and these influences are then combined to
calculate the overall relative risk associated with each considered
location.

RTM has been described in detail elsewhere [6] and we will
only describe its general functioning here. RTM is a two-step
modeling process. In the first step RTM uses an elastic net
penalization from the “penalized” R package [20] with cross-
validation to perform both variable selection and regularization
on a Poisson regression model of environmental risks. Model
factors that stand up to shrinkage with nonzero coefficients in the
penalized model are accepted as useful risk factors and passed to
the next step for building the most parsimonious model.

In the second step RTM conducts a bidirectional stepwise
regression using the “gamlss” R package [21] on the remaining
risk factors resulting from the first step. Stepwise regression is
a method to automatically reduce the complexity of a statistical
model by identifying the predictive variables that significantly
improve the fit to the data. The process consists in adding
and removing predictive variables in a stepwise manner (i.e.,
one predictor at a time) and evaluating whether it significantly
improves the fit to the data using in our case a BIC (Bayesian
Information Criterion) score. The BIC score is a measure of the
likelihood of the fit penalized by the number of predictors in the
model. The model with the lowest BIC score is preferred as it
strikes a balance between higher likelihood of the fit and lower
complexity of the model. We repeated this process twice: once
assuming a Poisson distribution of the model’s residuals, and
another time assuming a negative binomial distribution. Overall
relative risk scores are then produced for each cell unit to produce
the final risk terrain map covering the entire geographic extent of
the Newark study area, which excluded the seaport and airport
areas because their crimes fall under a different law enforcement
jurisdiction than the NPD.

For the current study, the risk terrain map was produced
using the RTMDx software, which was developed by Rutgers
Center on Public Security [5]. This utility automates the RTM
steps of operationalizing the spatial influence of risk factors,
selecting/validating the risk factors with existing outcome event
data, weighting the risk factors in relation to one another, and
producing the final risk terrain map.

For each of the 20 potential risk factors described in section
Land Use Data, at least 6 variables were built to measure spatial
influences. These measured whether the raster cells in Newark
were within 0.5, 1, 1.5, 2, 2.5, or 3 blocks of the features or in an
area of high density of the factor’s features. Although the extent
of spatial influence can theoretically be operationalized at less
than one-half block or beyond three blocks, these distances were
set as the minimum and maximum search extents because they
are believed to give a meaningful reach of a land use feature’s

influence from a policing perspective [22, 23], and the half-
block increments were used to account for varying extents of
the land use features’ spatial influences. For both the distance
and the density calculations, we determined which cells of the
study area fall into the areas defined by the different spatial
extents by calculating the distance of the cell centroids to the
land use feature of interest ([24], p. 5). Then, raster cells that
fall within the threshold proximity (0.5, 1, 1.5, 2, 2.5, or 3
blocks) were represented as 1 (highest risk), whereas the cells
outside this threshold proximity were represented as 0 (not
highest risk). Density variables were reclassified into highest
density (density≥mean+ 2 standard deviations) and not highest
density (density < mean + 2 standard deviations) regions.
Highest density regions were represented as 1, and regions that
are not highest density were represented as 0. Ultimately, 186
model factors were produced that represent various distances
from or densities of the 20 land use features in the risk terrain
model. These values were then assembled into a table with rows
representing cells and columns representing binary variables, and
the count of street robbery events (the dependent variable) at
each raster cell was calculated.

Spatio-Temporal Event-Dependence
The near repeat victimization hypothesis states that the
occurrence of a criminal event at a location increases the
likelihood of a subsequent event occurring at the same or a
nearby location within a given time window. In order to measure
this effect, we first calculate the spatio-temporal association
between events as follows. For each robbery event in Newark in
2009 and 2010 we compute the probability that another event
occurred within m cells from (m = 0, 1, 2, . . . , 40) and n days
after (n= 0, 1, 2, . . . , 40) the original event.

The next step is to determine whether these probabilities are
higher/lower than those expected under the assumption that
there are no spatio-temporal dependence between events. For
this, we use a permutation method to generate 1,000 surrogate
data sets (of the same length as the original data set) in which
the dependence between successive events is broken. First we
randomly sample crime locations from the original data set with
replacement. The probability of sampling a given location is
proportional to the environmental risk value for this location as
obtained from the RTM calculation (see previous section). We
then associate a time to each surrogate location by randomly
sampling existing occurrence times from the original data set
with replacement. This procedure ensures that all surrogate
events are independent in time, and that their spatial dependence
is only driven by the structure of the environment, and not the
location of previous events.

For each of the 1,000 surrogate data sets, we then calculate the
spatio-temporal association between events following the same
procedure as for the original data set. We then calculate the
average ratio between the spatio-temporal association matrix of
the original data set and that of the 1,000 surrogate data sets (a
2D Gaussian smoothing with standard deviation of 1 day and 1
cell is also applied to the resulting matrix). A ratio superior to 1
for a given combination of n and m indicates a likelihood higher
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than random for an event to occur m cells from and n days after
a previous event. A ratio inferior to 1 indicates the opposite.

If the near repeat victimization hypothesis is correct, we
expect to see a maximum increase in likelihood at m = 0 and
n= 0, with a progressive decrease as bothm and n increase.

Forecasting Model
We propose to integrate together the environmental influences
determined via RTM and the event-dependent spatio-temporal
associations determined via permutation in a computer
simulation model. The goal of the model is to forecast the most
likely locations of future crime occurrences, given a risk terrain
map locally weighted by the presence of past crime occurrences.
The general functioning of the model is as follows:

1. Calculate a risk terrain map of the area of interest as described
in section Risk Terrain Map. This map will be fixed for the
entirety of the simulation as we assume that environmental
risks do not change faster than the time scale of the simulation
(a few days to a few weeks in the case of this study).

2. Calculate the spatio-temporal influence of crime occurrences
on future events as described in section Spatio-Temporal
Event-Dependence.

3. Create an initial spatio-temporal event-dependent risk map
using existing crime occurrence data. This map should have
the same dimensions as the risk terrain map. All cells of the
map are initially set to 1. Each cell’s value is then modified
according to the distance to and time since each past crime
occurrence, based on the spatio-temporal influence ratio
calculated in the previous step. We assume that the respective
influences of multiple past events are additive.

4. For each simulation step (1 day in the case of this study),

a. determine the number of crime occurrences based on a
distribution calculated from the original data set.

b. For each simulated crime occurrence:

i. Determine its location by randomly selecting a cell
on the map. The probability of a cell being selected
is proportional to the environmental risk value at its
location on the risk terrain map multiplied by the event-
dependent risk value at its location on the map.

ii. Update the event-dependent spatio-temporal risk map
to include the influence of the new simulated event.

c. Before starting the next step, update the event-dependent
spatio-temporal risk map to account for the temporal
change in event-dependent spatial influence.

By simulating the model N times, we can compute a predicted
probability of crime occurrence for each cell of the map.

Model Performance
We compare the forecasting performance of our model (referred
to as full model in the rest of the text) against three control
simulation models:

1. A random model, in which the locations of the simulated
events will be selected independently of any environmental or
event-dependent influence.

2. An environmental model only (referred to as RTM-only
model in the rest of the text), in which the probability of a cell
being selected is proportional to the environmental risk score
at its location on the risk terrain map only.

3. An event-dependent spatio-temporal model only (referred
to as event-only model in the rest of the text), in which
the probability of a cell being selected is proportional to
the the event risk value at its location on the event-
dependent risk map only. Note that in this case, we will
recompute the shape of the spatio-temporal influence as in
section Spatio-Temporal Event-Dependence, but in absence of
environmental influence.

For this comparison, we use a risk terrain map computed as
described in section Risk Terrain Map using the Newark data
from 2009 and 2010. The shape of the spatio-temporal influence
is also computed using the 2009–2010 data. The data from 2011
and 2012 are used to initialize the event risk map and measure
the performance of the models. This ensures that the model is
never tested against data that has been used to parameterized it.
In particular, each simulation starts at a given date in 2012 and
the corresponding event risk map is initialized with all the data
earlier than this date up to one year in the past.

Given a starting date, each model is simulated N times for
n days after the starting date. For each actual crime occurrence
in the n days after the start date, we compute the proportion
ρ of simulated events that fall within 5 blocks of it. A higher
average value of ρ indicates a higher clustering of simulated
events around real events and therefore a better ability of the
model to forecast changes in crime distribution. We can then
rank the models by measuring the ratio between their average ρ

and the average ρ of the random model which does not have any
predictive ability.

RESULTS

Risk Terrain Map
According to the results of the bidirectional stepwise regression
presented in Table 1, the risk terrain exhibits 11 land use features
that have a criminogenic spatial influence on robberies in Newark
(see Table 1). The Relative Risk Values in the table correspond to
the exponentiated coefficients for each predictive variable in the
best model selected by the RTM procedure. Once exponentiated,
each coefficient is the multiplier value corresponding to a unit
change in the respective predictive variable. They convey the
weighting of the variables in relation to one another and reveals
that a single feature might be a more or less important factor
for the emergence of robberies at particular places. For instance,
places influenced by nearby gas stations are almost twice as risky,
or vulnerable, to robbery as places influenced by nearby takeout
restaurants.

Places that are under the combined criminogenic spatial
influence of these land use features had a higher risk of
robberies than the places that were not. The risk terrain
map represents weighted combinations of these risks at places
throughout Newark, with risk scores ranging from the minimum
standardized risk score of 1 to the maximum of 249.059 (see
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TABLE 1 | Negative binomial type II Risk Terrain Model Factors: MuC, mean parameter coefficients; standard errors; RRV, relative risk values; Op, operationalizations; SI,

spatial influence.

Risk factor Op SI (feet) RRV MuC estimate* Std. error t-value

Known drug markets Density 226 3.058 1.1176 0.5997 18.637

Gas stations Density 226 2.569 0.9436 0.18046 5.229

Eat-in restaurants Density 226 2.396 0.8737 0.07152 12.217

Foreclosed properties Proximity 678 2.227 0.8007 0.07220 11.090

Recreation centers Proximity 452 1.911 0.6477 0.14700 4.406

Grocery stores Proximity 1,356 1.727 0.5462 0.08602 6.349

Convenience stores Proximity 226 1.712 0.5377 0.11250 4.799

Schools Proximity 1,356 1.631 0.4892 0.06646 7.360

Packaged liquor stores Density 226 1.598 0.4688 0.11755 3.988

At-risk housing Proximity 226 1.405 0.3397 0.5349 6.352

Take-out restaurants Proximity 1,130 1.320 0.2780 0.04880 5.696

Intercept – – – −3.0971 0.09715 −31.881

*All values are significant at p < 0.001.

Figure 1A). So a place with a risk score of 249 had an expected
rate of robberies that is 249 times higher than a place with a risk
score of 1.

Spatio-Temporal Event-Dependence
In the 2009–2010 data, the distribution of the number of
daily robbery occurrences follows a Poisson distribution with
an average value of λ ≃ 3.97 (see Figure S1A) and we
observe no strong autocorrelation between successive days (see
Figure S1B). In the model, we use this Poisson distribution
without autocorrelation to randomly allocate a number of crime
occurrences to each time step of the simulation.

As expected under the near repeat victimization hypothesis,
we observe a maximum increase in likelihood (3.59) at m = 0
cells and n = 0 days, with a progressive decrease as both m and
n increase (see Figure 2). We find that this likelihood landscape
can be well approximated by an inverse function of m combined
with a decreasing exponential function of n, of the form:

1+
αeδn

βm+ γ
(1)

with α ≃ 2.59, β ≃ 1.47, γ = 1 and δ ≃ −0.32 when
environmental influences are taken into account during the
permutation process, and with α ≃ 4.62, β ≃ 1.1, γ = 1 and
δ ≃ −0.2 when they are not.

We use this calibrated function in the forecasting model to
generate the initial event-dependence map (see Figure 1B for an
example) and update it after each simulated event, as described
in section Forecasting Model.

Model Performance
Figure 3 shows examples of forecasting landscapes produced
for January 1–7, 2012, for the RTM-only model (Figure 3A),
the event-dependence-only model (Figure 3B), and the full
model (Figure 3C), against the actual robbery occurrences
during that period (white dots). Figure 3D shows for that
particular week in 2012 how each model compares to the

random model following the procedure described in section
Model Performance. All models perform better than random,
with the full model combining environmental and event-
dependent influences performing better than the RTM-only
model accounting for environmental influences only and the
event-dependence-only model accounting for spatial-temporal
event dependencies only, in that order.

Figure 4 summarizes the results of similar analyzes for
predictions over 3, 7, 14, and 28 days for 51 different weeks in
2012 (instead of just the first week of 2012 as in the examples
in Figure 3). In each case, the results show that the full model
performs significantly better than the random model, the event-
dependence-only model and the RTM-only model, in that order
(as shown by the non-overlapping notches in the boxplots;
Wilcoxon ranked test, all p-values < 0.001).

Finally, Figure 5 summarizes a direct comparison between
the RTM-only model (the current state of the art in predictive
criminology) and the full model that accounts for both event-
dependent and environmental influences. For predictions over 1–
10 days, for 51 differents weeks in 2012, the full model performs
significantly better than the RTM-only model (as shown by the
non-overlapping notches in the boxplots; Wilcoxon ranked test,
all p-values < 0.001). Note that the variance of the data decreases
with the number of days over which the predictions are calculated
because of the increasing number of actual robbery occurrences
that can be used to compute the average ρ value for each model.

DISCUSSION

We presented in this paper a hybrid approach tomodel the event-
dependent and environmental drivers of criminal behaviors
(more specifically robberies) at the scale of a large city (Newark,
NJ). This approach combines methods from collective behavior
(modeling of dynamic interactions between agents or events) and
criminology (risk terrain modeling) to improve forecasting of
the emergence and evolution of patterns of criminal activities.
The rationale behind this hybrid approach is that RTM—the
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FIGURE 1 | (A) Risk terrain map calculated for robberies in Newark using data from January 1, 2009 to December 31, 2010 following the method described in

section Risk Terrain Map. Lighter colors indicate cells with higher relative risk values (log scale). (B) Event dependence map calculated using data from January 1,

2011 to December 31, 2011 and Equation 1. Lighter colors indicate cells with elevated risk due to past robbery occurrences.

FIGURE 2 | Spatio-temporal influence of previous robbery occurrences on future events calculated with data from January 1, 2009 to December 31, 2010 following

the method described in section Spatio-Temporal Event-Dependence (Left), and its fit with Equation 1 (Right). The colors represent the ratio between the probability

that another event occurred within m cells from and n days after the original event and the same probability after random permutation of the events. As expected

under the near repeat victimization hypothesis, we observe a maximum increase in likelihood (3.59) at m = 0 cells and n = 0 days, with a progressive decrease as

both m and n increase.

current state-of-the-art in criminology [4]—does not account
for the dependence between successive events, i.e., that the
occurrence of a crime at a location increases temporarily the
likelihood of future occurrences at or in the neighborhood
of that location, independently of other factors such as the
environmental makeup. We proposed to complement RTM with
a procedure simulating this spatio-temporal event-dependence in
order to obtain more accurate forecasting of the changes in the
distribution of crime occurrences over time.

The first step of this procedure is to estimate the spatio-
temporal dependence between successive events after
controlling for environmental influences as estimated using

RTM (Figure 1A). Our results (Figure 2) show that, indeed,
there is an elevated risk of robbery around previously robbed
locations. This increase can be modeled as an inverse function of
the distance to the original robbery, and its intensity decreases
exponentially with the duration since the original robbery.
This is in line with recent studies on hot spots policing that
suggest that crime is not randomly distributed and is dependent
on events that occurred in close proximity to new ones. For
instance, based on a meta-analysis, [25] demonstrated the
efficacy of event dependent approaches in increasing the chances
that crime can be reduced or prevented in these areas of
concentration.
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FIGURE 3 | Example of predictions made by (A) the RTM-only model, (B) the event-dependent-only model, and (C) the full (RTM + event dependence) model,

against real robbery occurrences (white dots) in Newark, from January 1, 2012 to January 7, 2012. Lighter colors indicate locations in Newark where the models

predict a higher likelihood of future robbery occurrences. (D) Shows the improvement that each model provides over a random model without predictive ability,

calculated following the procedure described in section Model Performance.

The second step of the procedure uses simulations seeded
with historical data to estimate the distribution of future robbery
occurrences. In these simulations, the probability of a robbery
happening at a location is proportional to the environmental risk
at this location (as estimated by risk terrain modeling) modulated
by nearby past occurrences (as estimated in the first step of
the procedure). In our study, we compare the performance of
this hybrid model with the performance of RTM (by setting the
event-dependence to zero) and with the performance of an event-
dependent only model (by setting the same environmental risk
for all cells). This comparison is achieved bymeasuring the ability
of each model to cluster predicted events for a period of time
around the location of actual events during that same period
of time, relative to a fully randomized model. Our results show
that the predictions of the hybrid model are significantly better
than the predictions of the other tested models, and that this
improvement is maintained over time (at least for predictions
up to 4 weeks in the future). The size of the improvement over

the RTM-only model may seem limited (4–5% in average) but
it is nonetheless significant and can be explained by the quick
attenuation of the spatio-temporal influence of past events (see
Figure 2) typical of crimes of opportunity such as robberies.
Larger effect sizes should be expected for crimes involving
stronger interactions between the agents involved. For instance,
drug markets and prostitution strolls are more enduring, often
locating in the same place over long periods of time, suggesting
that social factors work as facilitators in perpetuating these
locations as areas of delinquency.

From a criminological perspective, our results suggest that
the complexity of crime hotspots in a jurisdiction, which are
derived through individual offender activities, do not necessarily
require sophisticated individual behavior rules to emerge, persist,
or desist. The process can be described probabilistically as a
combination of environmental factors and interactions between
neighboring successive events. Crimes may not always occur at
expected highest-risk places or within existing hotspot areas.
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FIGURE 4 | Performance comparison between the full model and the random, event-dependent-only and RTM-only models for predictions at (A) 3 days, (B) 7 days,

(C) 14 days, and (D) 28 days. Performance are shown as percent improvement of the full model over each of the other 3 models. Each boxplot corresponds to 51

measurements, each corresponding to the beginning of a different week in 2012. The notches in the boxplots correspond to the 95% confidence interval of the median

and them not containing the zero line indicates strong evidence for the median to significantly differ from zero [37]. The symbols above each boxplot correspond to the

significance level as calculated using a Wilcoxon ranked test with a null hypothesis of no improvement (ns, non-significant; *p < 0.05; **p < 0.01; ***p < 0.001).

But, as time passes, the rational choices and stochasticity of
individual offenders’ decisions yields a few more crimes at
the most “suitable” places. The greater number of crimes at
these suitable places induces a greater number (and veracity)
of perceptions that these places are “most suitable” to commit
crime and reap rewards. Additional crime events stimulate more
offenders to choose these places to commit their crimes, and so
on Andresen [26].

So, in explaining the clustering of illegally behaving
individuals, we view these as a set of dynamic mechanisms
whereby hotspots appear at the global level from local
interactions among its lower-level components, without
being explicitly coded at the individual offender level [14].
In this scenario, positive feedback for a “hotspot cohort” of
offenders results from the execution of simple behavioral “rules
of thumb” that promote the creation of hotspots. A successful
robbery event, for instance, whereby an offender received

cash from a victim and was never arrested or punished for
it, is a kind of positive feedback which creates the conditions
for similar/repeat crimes at the same locale and ultimately
clustering at some places, and not others [27]. This is similar
to the results of many studies on the aggregation behavior of
social animals: they preferentially cluster at favorable locations
but, because the individuals are also attracted toward each
other, (1) they tend to aggregate at only one or a few among
all the favorable locations, and (2) they can sometimes form
a stable aggregate at an unfavorable location if a large enough
groups has been formed there by chance [16, 18, 28]. In the
criminological context, this would explain why not all high-risk
locations—as predicted by RTM—become crime hotspots, and
why low-risk locations may turn into hotspots in rare cases
[11].

By combining environmental and event-dependent
influences, our approach suggests a graduated approach to
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FIGURE 5 | Performance comparison between the full model and the

RTM-only model (the current state of the art model in predictive criminology)

for predictions at 1–10 days. Performance are shown as percent improvement

of the full model over the RTM-only model. Each boxplot corresponds to 51

measurements, each corresponding to the beginning of a different week in

2012. The notches in the boxplots correspond to the 95% confidence interval

of the median and them not containing the zero line indicates strong evidence

for the median to significantly differ from zero [37]. The symbols above each

boxplot correspond to the significance level as calculated using a Wilcoxon

ranked test with a null hypothesis of no improvement (ns, non-significant;

*p < 0.05; **p < 0.01; ***p < 0.001).

mitigating crime through intervention. At a short timescale,
our model predictions can inform practitioners when allocating
police resources to places forecasted to be soon in greatest
need of mitigation, based on the accumulation of recent crime
occurrences. This would (1) help prevent the formation of
hotspots by better directing police action and (2) help identify
locations to where crime might be displaced after police
intervention at an emerging hotspot [29]. On a longer timescale,
our ability to identify the environmental drivers of crime
may help policy makers better plan the urban and economic
development of neighborhoods, either avoiding environmental
features that are known to increase risk, or mitigating their effect
with those decreasing risk [4, 30].

CONCLUSION

Malleson et al. [31] argue that modern criminology theory
has highlighted the individual-level nature of crime—whereby
overall crime rates emerge from individual crimes that are
committed by individual people in individual places. However,
they say, “traditional modelingmethodologies struggle to capture
the complex dynamics of the system. The decision whether or
not to commit a burglary, for example, is based on a person’s
unique behavioral circumstances and the immediate surrounding
environment.” Malleson et al. [31] add that an effective way to
address these problems is through individual-level simulation

techniques such as agent-based modeling have begun to spread
to the field of criminology. This paper builds on this work and
provides new insights into how this approach can advance crime
analysis in the future. Indeed, our work:

1. demonstrates that combining event-dependence with
environmental predictors enhances our forecasts of future
crime over existing methods, even in the case of crime of
opportunity—such as robberies—with high attenuation rates;

2. supports the hypothesis that offenders pay attention to the
results of previous crime incidences when deciding to commit
a crime at a given location;

3. offers a new approach to operationalize and measure risk
from exposure (past event) and vulnerability (environment) in
assessing their combined spatial influence on crime outcomes
and distributions;

Finally, while this approach borrows from the study of collective
behaviors in biology, it reciprocates through offering a tested
method to forecast behavior accounting for both individual
decisions and environmental factors at different spatio-temporal
scales. In addition, recent advances in understanding the role
individual behavioral modulations and social networks play
in shaping the collective behavior of animal groups [32–36]
should provide new sources of inspiration for the design
of control strategies for place-based policing and community
redevelopment efforts.
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