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Abstract
A large body of research has found that crime is much more likely to occur at certain
places relative to others. Attempting to capitalize on this finding to maximize crime
prevention, many police administrators have sought to narrow their department’s
operational focus and allocate resources and attention to the most problematic loca-
tions. However, in the face of a growing number of technological advances in crime
forecasting that have facilitated this trend, it is still unclear how to best identify the most
appropriate set of places to which resources and attention should be directed. Our goal
was to examine this issue by exploring the ways in which spatial vulnerabilities and
exposures could be used to identify the best target areas for policing. Using the Theory
of Risky Places as a guide, we employed kernel density estimation (KDE) to measure
crime exposures and risk terrain modeling (RTM) to identify crime vulnerabilities with
the expectation that crime would be predicted more accurately by integrating the
outputs from these two methods. To test this hypothesis, our analysis utilized 1 year
of data on street robbery in Brooklyn, New York. A common metric, the prediction
accuracy index (PAI), was computed for KDE, RTM, and the integrated approach, over
1 month and 3 month intervals. We found that the integrated approach, on average and
most frequently, produces the most accurate predictions. These results demonstrate that
place-based policing and related policies can be improved via actionable intelligence
produced from multiple crime analysis tools that are designed to measure unique
aspects of the spatial dynamics of crime.
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Introduction

The crime and place perspective suggests that police resources should not be randomly
distributed among large beat, sector or municipal areas (Eck and Weisburd 1995).
Deploying resources according to macro areas without priority to micro places within
them assumes that crime is equally likely to occur everywhere within the macro
geography (Sherman and Weisburd 1995). However, a line of research that burgeoned
in the late 1980’s, and continues to grow today, found that uniform distributions of
crime are far from the reality and that resources can be allocated in a much more
efficient and effective manner. Sherman et al. (1989), for instance, found that just 3% of
places within Minneapolis, MN accounted for roughly half of all demand for police
service. Though several prior studies had already reported uneven spatial distributions
of crime across broad geographic areas (e.g., Guerry 1833; Shaw and McKay 1942;
Quetelet 1842), the results of Sherman and colleagues were novel in that they extended
the finding of crime concentration to ‘places,’ or micro units of analysis equivalent to
street segments, block faces, addresses, or groups of addresses (Weisburd 2008, 2).
Several recent studies have since corroborated the findings of Sherman and colleagues
(e.g., Andresen et al. 2016; Braga et al. 2011; Braga et al. 2010; Caplan et al. 2011;
Weisburd et al. 2012). These studies have helped to usher in a new era of policing that
capitalizes on the influential role of geographic landscapes in facilitating crime (see
Andresen 2014). Further, they have demonstrated the practical value of geographic
information system (GIS) tools, spatial data acquisition, and spatial analysis.

The contemporary consensus among scholars and practitioners is that policing
should not be implemented randomly; some places should receive greater priority than
others for the greatest public safety return (Skogan and Frydl 2004). More specifically,
police resources are best utilized when allocated to places where crime is most likely to
happen (Braga et al. 2014; Kennedy et al. 2015a). The issue then, is how to best
identify these places in the interest of allocating limited police resources to manageable
areas that are likely to be the most problematic. While recent advancements in data and
technology have proffered a number of tools to facilitate this endeavor, there is much
room for improvement.

In this study we examine the ways in which spatial vulnerabilities and exposures to
crime can be used to accurately identify probable places for future occurrence. BSpatial
vulnerability^ refers to the context of environmental risk, or the probability of particular
outcomes (Caplan and Kennedy 2016). A place’s vulnerability to robbery is measured
through risk terrain modeling (RTM) as a score of the weighted influences that nearby
attractors and generators of illegal behavior have on it (Brantingham and Brantingham
1995). BExposure^ refers to the historical facts and collective memories people have
about places and the events that occurred there (Caplan and Kennedy 2016). It is the
existing knowledge about past offending behaviors and crime hot spots, as measured
through kernel density estimation (KDE) (Chainey et al. 2008). We evaluate these two
common crime analysis methods independently and jointly to compare their crime
prediction efficacy. Whereas police want to predict1 and prioritize places that

1 Although crime ‘forecasting’ and ‘prediction’ are technically different concepts, they are often used
synonymously in practice (see RAND, 2013). Therefore, we use the two terms interchangeably throughout
this paper.
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disproportionately experience crime, and whereas a focus on micro places is the
evidence-based modern day best practice, often resulting in measurable crime reduc-
tions merely through strategic assignments of officer presence (Ariel and Partridge
2016; Kennedy et al. 2018; Koper 1995; Koper et al. 2013; McGarrell et al. 1999; Piza
and O’Hara 2014; Ratcliffe et al. 2011 Rosenfeld et al. 2014; Sherman and Weisburd
1995; Taylor et al. 2011), we sought to identify a viable method for police analysts to
define target areas for police resource allocation and intervention in the face of two
common options: hot spot analysis and risk terrain modeling. We hypothesized that
crime would be predicted at places more accurately by considering the information
produced by integrating the two methods instead of relying on a single method alone.
This paper presents why this expectation turned out to be true for the crime of street
robbery in Brooklyn, New York.

Conceptual Framework

Scholars and practitioners alike understand that police efforts to control and prevent
crime are maximized when focused at micro-level places that are most likely to
experience a disproportionate share of crime (Braga et al. 2014). More elusive, and
arguably inconsistent in practice, is the best way to operationalize ‘problem places’ into
‘target areas’ that can be subjected to police interventions. Methods for crime mapping
and analysis can take many forms (see Santos 2012), but a common approach involves
identifying past spatial patterns of crime to make assessments about specific places
where crime is likely to occur in the future. Rapid improvements in data and GIS
technology have led to the creation of numerous analytic techniques to do this (Perry
et al. 2013; Eck et al. 2005). For most methods the goal is to identify crime ‘hot spots,’
or places in a jurisdiction with a disproportionately high frequency of crime (Sherman
1995). Hot spot methods measure ‘exposure,’ or the historical crime facts about places
and events that have occurred there, within a jurisdiction (Caplan and Kennedy 2016).
Hot spots can provide a good measure of future crime places.

Some common methods for identifying crime hot spots include kernel density
estimation (KDE) (Chainey et al. 2008), spatial and temporal analysis of crime
(STAC) (Block and Block 2004), and nearest neighborhood hierarchical (Nnh) clus-
tering (Levine 2004). A number of studies have compared these and other methods
relative to one another with regard to their efficacy in predicting which places will
generate the greatest share of crime in future time periods (Chainey et al. 2008; Drawve
2016; Drawve et al. 2016; Hart and Zandbergen 2012; Levine 2008; Van Patten et al.
2009). KDE often stands out among these studies and has become a frequently utilized
hot spot mapping and crime prediction method. According to Hart and Zandbergen
(2014), KDE is popular among researchers and practitioners given its accessibility in
mainstream GIS or data management software, such as Esri ArcGIS or Microsoft Excel
(Power Map), as well as the relatively simple and straightforward interpretation and
aesthetic appeal of its outputs (306). Moreover, and perhaps more important, is the
relative efficacy of KDE for identifying locations where crime will be most likely to
occur. For example, research by both Chainey et al. (2008) and Drawve (2016) found
that KDE outperformed other methods, such as STAC and Nnh, by predicting crimes
over the smallest geographic areas. However, Levine (2008) found that Nnh produced
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the best predictions relative to other methods (including KDE), and research by Hart
and Zandbergen (2012) determined that no single method is superior to another. Van
Patten et al. (2009) suggested that different hot spot techniques are useful in different
situations, so there is no single best option.

Although the KDE analysis is completed with a few clicks of a mouse in a GIS,
KDE is a mathematically sophisticated way to calculate surface density. In ArcGIS, for
example, KDE begins with an initial set of crime incident point locations distributed
over a continuous surface of equally sized raster grid cells covering the study extent.
The kernel density function draws a circular neighborhood around each sample point
and then applies a mathematical function that goes from 1 at the location of the point to
0 at the neighborhood boundary. A kernel is a smoothly curved surface that is fitted
over each point. Then, a density value for each cell in the grid that comprises the study
area is calculated by adding the values of all the kernel surfaces where they overlap.
Weights are calculated for each point within a specified search radius (i.e. bandwidth),
with points near the center weighted more heavily than points near the edge (Johnson
and Ratcliffe 2013). Places with exceptionally high density values are considered crime
hot spots.

KDE, like other hot spot methods, is a retrospective approach to crime prediction,
based on known recent past incident locations, i.e. exposures. Results are operational-
ized for practice with the expectation that new crimes will occur in the future at the
same locations where exposures concentrated in the past. So, police resources and
interventions are focused at hot spots because they have been the places for significant
proportions of criminal activity and, thus, are believed to offer the greatest crime
reduction potential (Braga and Weisburd 2010; Braga et al. 2014).

In a recent paper testing the Theory of Risky Places, Kennedy et al. (2015b) argued
that crime vulnerability at any given place within a jurisdiction can be evaluated by
understanding what features of the environment contribute to the emergence and
persistence of hot spots. They calculated crime risk scores of places as a product of
the weighted influences that nearby attractors and generators exerted on illegal behavior
at each place. Within this context, place-based values of crime risk, or spatial vulner-
ability, offer a mechanism to forecast the emergence of crime problems at micro places
within a study area. But, as demonstrated in Kennedy et al.’s paper, relying on spatial
vulnerability alone to make predictions about locations for crime is problematized by
the possibility of false positive predictions, or the chance that certain places will be
identified as vulnerable (i.e., high risk) but never actually experience crime. Of course,
the same can be true of KDE hot spots. This can hinder police operations by causing
inefficient allocations of resources and intervention actions to places that are suitable
for crime, but that are relatively less likely to be exposed to it compared to other places.
To overcome this issue, assessments of exposure, such as hot spot analysis, can be
incorporated into assessments of spatial vulnerability, such as risk terrain modeling, to
make better place-based predictions. This is a key proposition of the Theory of Risky
Places proposed by Kennedy and colleagues. When combined with vulnerability,
exposure emphasizes a place’s experience and history with crime; that is, places where
crime tends to concentrate in the recent past will aggravate its spatial vulnerability and
thus increase its risk (Kennedy et al. 2018).

Risk terrain modeling (RTM) is used to articulate spatial vulnerability (Caplan and
Kennedy 2016). RTM relies on criminogenic features of the environment to identify
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risky places (Kennedy et al. 2012). In this regard, RTM builds on extant research
demonstrating a relationship between crime and certain environmental features, such as
bars, restaurants, and public transportation stops (e.g., see Bernasco and Block 2011).
Rooted in the idea that criminal behavior is influenced by the physical environment
(Brantingham and Brantingham 2008), RTM incorporates principles of environmental
criminology (Wortley and Mazerolle 2008) and risk assessment (Kennedy and Van
Brunschot 2009) to assess the probability of crime occurring among places within a
jurisdiction based on attractors and generators of criminal behavior (Brantingham and
Brantingham 1995). The probability of crime is estimated by testing the spatial
influences of attractive/generative features of a landscape, and their spatiotemporal
confluence at places, on crime outcomes within a jurisdiction (Caplan and Kennedy
2016). Several recent studies have incorporated RTM into evaluations of crime predic-
tion techniques (e.g., Garnier et al. 2018; Ohyama and Amemiya 2018; Dugato 2013;
Drawve 2016; Drawve et al. 2016; Irvin-Erickson 2014; Moreto et al. 2014; Yerxa
2013), finding RTM to have accurate predictions across a variety of crime types and
study areas.

The basic process of RTM (see also Caplan et al. 2015) involves first identifying
environmental features that are theoretically or have been shown empirically to be
associated with a given crime type. Once a pool of potential risk factors has been
identified, the next step involves creating a series of standardized raster grid (map) layers
based on each feature’s locations and spatial influences throughout a jurisdiction. Each
layer is then empirically evaluated to identify statistically significant risk factors and
their relative weights on crime location patterns. The final task involves combining the
individual risk map layers into a composite risk terrain map with risk scores indicating
the likelihood of crime across all places throughout the study area. Crime is highly
probable at places with high risk scores – where problematic environmental features
combine to create optimal conditions for offending. Police resources and intervention
actions are allocated to these locations in order to maximize crime and risk reduction
efforts (Kennedy et al. 2018; Caplan and Kennedy 2016; Kennedy et al. 2015a, b).

Whereas spatial vulnerability characterizes susceptibility to crime, or the likelihood
that crime will emerge at a specific place, and exposure characterizes historical
significance and experiences with crime, or the likelihood that crime will persist at a
specific place, a vulnerability-exposure framework for target area selection is expected
to yield the greatest value for policing policies and practices (Kennedy et al.2018).
Though several studies have compared the efficacy of vulnerability and exposure
methods against one another, none to our knowledge have examined the combined
effects of multiple methods for target area selection. One study by Caplan et al. (2013a)
explored the ‘joint utility’ of KDE and RTM to predict violence. They found that both
methods produced actionable information that could enhance allocation of police
resources. But their application of the two methods employed regression models
whereby each was controlled-for the other when assessing a respective method’s effects
on outcomes. Caplan et al. (2013a) demonstrated a strong and valuable contribution of
each method for purposes of crime prediction, but stopped short of operationalizing
these findings for the purpose of selecting target areas for police patrol purposes. They
did, however, attribute their high levels of variance explained and other significant
findings to the ‘joint utility’ of event dependent crime prediction techniques that
account for prior crime incidence as well as the surrounding environments that facilitate
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offending and create spatial vulnerabilities. This is further supported by Drawve et al.
(2019) who used both methods to predict traffic crashes in Green Bay, Wisconsin. The
current study builds on this work by creating a hybrid vulnerability-exposure measure,
using KDE and RTM, to assess specific places where crime is most likely to occur and
where resources could confidently and wisely be allocated.

Current Study

Study Setting and Crime Type

The study setting is Brooklyn, one of five boroughs in New York City, NY.2 Brooklyn
is situated east of Manhattan and south of Queens and totals approximately 71 mile2 in
size. Of the five boroughs, Brooklyn has the largest population with just over 2.6
million residents. After Manhattan, Brooklyn has the second highest population density
of the boroughs, with nearly 37,000 residents per square mile.

We focus on robbery, a violent crime that involves force or threat of force to obtain
something of value from another person (Wright and Decker 1997).3 According to the
Federal Bureau of Investigation (2014) robbery occurs frequently, and often in the
streets, which makes it an ideal outcome event for spatially-oriented research (Van
Patten et al. 2009). Robbery also has importance within the New York City Police
Department (NYPD), as the agency has typically considered robbery a ‘bell-weather’
crime that gauges levels of other violent crime and, thus, has tended to design crime
prevention interventions to target the occurrence of robbery (Maple and Mitchell 1999;
Sousa and Kelling 2006). Robbery complaints were provided directly from the New
York City Police Department (NYPD). Robbery complaints were obtained as XY
coordinates and imported into ESRI ArcGIS for preparation and analysis.4 Robbery
data for this study refer to only those incidents that occurred in the streets (not inside
buildings) over the course of 1 year from October 1, 2014 through September 30, 2015.
To make our research practically meaningful, crime predictions are compared each
month and every 3 months, which are commonly used time intervals for police
departments to assess ongoing and emerging trends (Santos 2012). Robbery counts
for each time period are displayed in Figs. 1 and 2.

Methods

Following prior studies (Chainey et al. 2008; Drawve 2016; Drawve et al. 2016;
Dugato 2013; Levine 2008; Van Patten et al. 2009) our metric for comparing the

2 See a reference map of Brooklyn, NY on Google Maps: https://goo.gl/maps/aE7no4KH3SR2
3 This definition is consistent with New York State Penal Law, see CJI2d [NY] Penal Law §160.00. The
NYPD classifies crime incidents using these definitions (see http://www.nyc.gov/html/nypd/html/crime_
prevention/crime_statistics.shtml).
4 Robbery and risk factor data provided to the research team by the NYPD were likely geocoded using a
composite method that matched first to streets then to parcels (which would explain the points that were offset
as much as 160 ft). Since XY coordinates were provided to us, we do not know more about the exact
geocoding method used by NYPD. For the point risk factors we manually geocoded, we used a 15-ft offset.
Polygon risk factors, conversely, pertained to parcel and building footprints in New York city and were not
georeferenced according to street centerline.
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individual and combined effects of exposure via KDE and vulnerability via RTM is the
prediction accuracy index (PAI). The PAI is a measure of crime prediction accuracy that
accounts for the size of the geographic area identified by crime from a previous time
period that is required to predict crimes for a subsequent time period (Chainey et al.
2008). The PAI is calculated using the following formula (Chainey et al. 2008):

PAI ¼
n

N

� �
x 100

a

A

� �
x 100

Fig. 1 Monthly robbery counts for Brooklyn, October 2014 – September 2015

Fig. 2 Three month robbery counts for Brooklyn, October 2014 – September 2015
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Where n represents the number of robberies in the hot spots or risky places, N is the
total number of robberies in the study area, a is the area (e.g., mi2) of the hot spots or
risky places, and A is the area (e.g., mi2) of the study area. The numerator is known as
the ‘hit rate’ whereas the denominator is referred to as the ‘area percentage.’ The PAI is
a useful metric for evaluating the utility of different crime prediction methods because it
is relatively easy to compute and accounts for frequency of crime relative to geographic
area required to predict crimes (Chainey et al. 2008). Higher PAI values indicate a
greater degree of accuracy for a given method, or that more crime is accurately
predicted within a smaller geographic area.

We calculate PAI values at 1 month and 3 month intervals for KDE, RTM, and
a combined measure (based on the two methods) to determine if accounting for
both vulnerability and exposure of places to crime enhances prediction accuracy.5

More specifically, a PAI value is calculated for each method and for each month
(i.e., 1 month of robbery data to predict the next month’s robberies) and for each
method every 3 months (i.e., 3 months of robbery data to predict the next 3
months’ robberies). This results in a total of 14 time periods (i.e., 11 one month
intervals and 3 three month intervals) for which PAI values are calculated and
compared for each method.

Analytic Approach

KDE requires several parameters to be specified a priori by the user, including
interpolation method (i.e., triangular or quartic), bandwidth (i.e., search radius),
and cell size (Hart and Zandbergen 2014). Both Drawve (2016) and Hart and
Zandbergen (2014) found the quartic method to be optimal for crime prediction,
which we use here.6 With regard to bandwidth, Drawve (2016) determined that a
1-block bandwidth produces the highest PAI values. Therefore, we use a 362-ft
bandwidth, which approximates the average block length in Brooklyn. Finally,
Hart and Zandbergen (2014) found that cell size has little or no effect on PAI
values. Therefore, to maintain consistency between the two methods (see discus-
sion below) we use a cell size of 181 ft, which approximates half a block length
in Brooklyn.

Each iteration of KDE utilized robbery incidents in one time period to
identify hot spot places that were likely to experience robbery in the next
subsequent time period. For our purposes, places were considered hot spots if
they had kernel density values that were two standard deviations or higher above
the mean kernel density value (Caplan et al. 2013a). A separate KDE was
produced using robbery incidents for each month to predict robberies in the

5 The robbery data used for this study was offset from street centerlines by as much as 160 ft. Most cells in the
fishnet of Brooklyn were within this distance from streets. However, some other study settings may not be
similar. For future research in other settings, we recommend that the fishnet used for testing predictive validity
of KDE and/or RTM be limited to only those cells that intersect streets if the crime incident data used for the
analysis are geocoded to street centerlines. Excluding non-intersecting cells before testing predictive validity
would account for where crimes could actually occur within the study setting; It would exclude the cells that
could never have a crime occur due to the technicalities of geocoding addresses to streets. This would likely
enhance the results of future research.
6 We use ArcGIS to perform each KDE, which by default employs interpolation based on the quartic method.
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following month. For example, for the first time period we used October 2014
robbery incidents to identify hot spots. We then determined the area of October
2014 hot spots relative to the area of Brooklyn and counted the number of
November 2014 robbery incidents that fell within them to calculate the PAI
values. We continued this process, performing KDE and calculating PAI values
for each month through August 2015 (predicting September 2015). This same
process was also completed every 3 months beginning with October – December
2014 (predicting January – March 2015) through April – June 2015 (predicting
July – September, 2015).

The RTM process began with the identification of potential risk factors for
robbery. The search for potential risk factors was based on theory and existing
empirical evidence that particular environmental features would be likely to
attract or enable robbery (e.g., see Bernasco and Block 2009, 2011; Dugato
2013; Haberman et al. 2013; Hart and Miethe 2014; LaVigne 1996; Roncek
et al. 1981; Roncek and Faggiani 1985; Roncek and Maier 1991; Smith et al.
2000; St. Jean 2007). In total, we include 27 environmental features of the
Brooklyn landscape as potential risk factors in each risk terrain model, which
are displayed in Table 1. Environmental feature data were obtained directly from
the NYPD as shapefiles compiled from numerous local government agencies: the
Department of Consumer Affairs, Department of Financial Services, Department
of City Planning, Department of Environmental Conservation, Department of
Information Technology and Telecommunications, Department of Parks and
Recreation, the New York City Housing Authority, and the New York State
Liquor Authority.

As with KDE, a separate risk terrain model was created each month and every
3 months to identify places where robbery was likely to happen in the next
month and next 3 months, respectively. For example, for the first month, risk
factors were validated and weighted based on October 2014 robbery data. The
resulting vulnerable places based on October 2014 risk factors were identified
and measured in terms of their area relative to Brooklyn. Finally, the number of
November 2014 robbery incidents that fell within the vulnerable places was
counted to calculate PAI values. We considered places to be vulnerable if their
relative risk scores (RRSs), produced by the risk terrain model, were two
standard deviations or higher above the mean RRS. We also completed this
process every 3 months beginning with October – December 2014 (predicting
January – March 2015) through April – June 2015 (predicting July – September,
2015).

All risk terrain models were created within the RTMDx software (Caplan and
Kennedy 2013). Similar to KDE, we specified a cell size of 181 ft and a block
length of 362 ft (the average block length in Brooklyn) as parameters for the RTM
analysis (Caplan et al. 2013b). Additional parameters for the RTM included
operationalization, maximum spatial influence, and analysis increments.
Operationalization refers to how the spatial influence of each environmental
feature will be tested. Caplan (2011) explains that the spatial influence of envi-
ronmental features may be operationalized as proximity (i.e., being near a feature
increases risk) or density (i.e., a cluster of features increases risk). Although
RTMDx can test both operationalizations and empirically select the most
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appropriate one, this is not always necessary (Caplan et al. 2013b). Basic visual
inspection of environmental features on a map and supplementary nearest neigh-
bor analyses can aid in the selection of which operationalization parameters to set
(Caplan and Kennedy 2016). For example, it makes little sense to test the spatial
influence of features as a function of density if they are randomly dispersed (i.e.,

Table 1 Environmental features included as potential risk factors in risk terrain models of robbery in
Brooklyn

Environmental feature n Observed
mean distance

Spatial pattern Operationalization

Banks 415 517.24 Clustered*** Both

Billiard Halls 7 5145.17 Random Proximity

Check Cashing Businesses 143 2071.86 Dispersed*** Proximity

Chemical Dependency Facilities 83 1207.40 Clustered*** Both

Cinemas 11 4140.73 Random Proximity

Clubs 40 2924.96 Random Proximity

Colleges and Universities 16 3445.80 Random Proximity

Food Pantries and Soup Kitchens 225 1252.81 Clustered*** Both

Gas Stations 249 1025.96 Clustered*** Both

Grocery Stores 2239 307.17 Clustered*** Both

Homeless Facilities 124 1486.28 Clustered*** Both

Hospitals 16 4708.05 Random Proximity

Hotels and Motels 73 1772.22 Clustered*** Both

Laundromats 1375 353.58 Clustered*** Both

Mental Health Facilities 206 787.05 Clustered*** Both

Developments† – – – Proximity

Off Premise Liquor Establishments 546 757.69 Clustered*** Both

On Premise Liquor Establishments 1411 293.92 Clustered*** Both

Parking Facilities 208 799.24 Clustered*** Both

Parks† – – – Proximity

Pawnbrokers and Secondhand Dealers 1504 264.08 Clustered*** Both

Pharmacies 647 604.54 Clustered*** Both

Postal Facilities 77 2795.17 Dispersed* Proximity

Schools 576 551.47 Clustered*** Both

Recreation Centers 7 9712.50 Dispersed*** Proximity

Restaurants 698 477.43 Clustered*** Both

Subway Entrances 545 176.49 Clustered*** Both

All environmental features’ spatial influence tested to a maximum extent of 3 blocks at half block increments

†Data were originally acquired as polygon shapefiles. However, the RTMDx Utility only accepts point
features as potential risk factors. Therefore, ArcMap 10.2.1. was used to convert each park polygon to a
representative grid of points prior to inclusion in the risk terrain model

*p < 0.05;***p < 0.001
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not clustered) throughout a jurisdiction. Table 1 displays the operationalization(s)
tested for each environmental feature.7

Maximum spatial influence defines the geographic extent to which environmental
features’ influences on crime extends (i.e., the influence of bars may extend to 1, 2, 3, or
even 4 blocks). Because research has found that the spatial influence of features typically
extends within just a few blocks (Groff and Lockwood 2014), we test the spatial influence
of each environmental feature to a maximum extent of 3 blocks. Finally, analysis
increments refer to the level of detail at which spatial influence is assessed (i.e., half-
block or whole-block increments). Because whole blocks provide a cruder assessment,
we tested the spatial influence of each environmental feature at half block increments to
more precisely specify the dynamics of spatial influence across the landscape.

Integrating KDE and RTM

For each KDE or RTM analysis, Brooklyn was represented as a raster grid of 181-ft by
181-ft cells (n = 61,361). Each cell (the statistical unit-of-analysis) represented a micro
place that may have been identified, during each one-month or three-month period, as a
hot spot via KDE or a vulnerable place via RTM. To evaluate the co-effects of the two
methods, we used a simple Boolean approach to create an integrated measure of
exposure and vulnerability. Within ArcGIS, we created a single vector grid of cells
with the same size and dimension as the raster grids employed in the KDE and RTM
analyses. Within the accompanying attributes table, we created separate columns to
indicate whether each cell was considered a hot spot or vulnerable place during each
time period. Then for each time period, we ‘selected by attributes’ (in ArcGIS) cells
that were considered both hot spots and vulnerable places. For cells that were both hot
spots and vulnerable places, we measured their area relative to Brooklyn and counted
the number of robberies in the subsequent time period to calculate PAI values. The PAI
values were then compared across all three approaches to determine if robbery predic-
tions improved when jointly considering the outputs of both approaches relative to
those of the single method.

Results

Table 2 presents the descriptive information that was utilized to calculate PAI values for
each time period. For example, each month RTM identified an average of 1557.82 cells
(SD = 736.83) as highly vulnerable to robbery. This approximates 2.54% of places in
Brooklyn. In contrast, each month KDE identified 2.20% of places in Brooklyn as hot
spots, or 1347.82 cells (SD = 178.69) on average. The integrated measure (INT) of
vulnerability-exposure identified the fewest places as problematic in Brooklyn each

7 We use the Nearest Neighbor Threshold (NNT) to select operationalization parameters. The NNT can be
calculated using the following formula: 2 * (Block Length * Number of Analysis Increments). This formula
produced a NNT of 4344. If the features were not significantly clustered or if the observed mean distance
(reported by the NN analysis) were greater than the NNT, the ‘proximity’ to features was tested. If the features
were significantly clustered and the observed mean distance was less than or equal to the NNT, ‘both’
proximity to and density of features was tested.
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month. On average, 114.84 cells (SD = 61.84) were considered to be problematic (i.e.,
both vulnerable and exposed) to robbery. This is equivalent to less than one-fifth of 1 %
of places throughout Brooklyn. Overall, more places were identified by each method as
problematic when considering 3 month intervals. This was expected as longer time
frames account for a larger number of robbery incidents. Every 3 months, on average,
RTM identified 2002.33 cells (SD = 721.86), or 3.26% of places in Brooklyn, as

Table 2 Number of cells, future crimes, and the hit rate for RTM, KDE, and the integrated measure at 1 month
and 3 month time intervals

Method Time period AVG SD

1 2 3 4 5 6 7 8 9 10 11

RTM (1 month)

n future
crimes

23 13 14 8 13 21 8 10 17 12 22 14.64 5.41

hit rate 14.11 6.31 7.04 5.93 8.97 14.58 4.57 5.99 9.09 6.03 9.87 8.41 3.35

n cells 3130 1748 1274 626 2361 1684 719 844 1717 1330 1703 1557.82 736.83

RTM (3 month)

n future
crimes

62 79 59 – – – – – – – – 66.67 10.79

hit rate 12.94 16.26 9.69 – – – – – – – – 12.96 3.29

n cells 1773 2811 1423 – – – – – – – – 2002.33 721.86

KDE (1 month)

n future
crimes

15 14 15 14 8 5 7 14 12 13 18 12.27 3.95

hit rate 9.2 6.8 7.54 10.73 5.52 3.47 4 8.38 6.42 6.53 8.07 6.97 2.15

n cells 1632 1301 1518 1437 1084 1123 1137 1381 1287 1421 1505 1347.82 178.69

KDE (3 month)

n future
crimes

66 57 81 – – – – – – – – 68 12.12

hit rate 13.78 11.73 13.3 – – – – – – – – 12.94 1.07

n cells 3306 2823 2913 – – – – – – – – 3014.00 256.85

INT (1 month)

n future
crimes

5 2 2 1 1 1 1 3 2 1 2 1.91 1.22

hit rate 3.07 0.97 1.01 0.74 0.69 0.69 0.57 1.8 1.07 0.5 0.9 1.09 0.74

n cells 257 145 98 42 146 98 46 46 138 116 131 114.82 61.84

INT (3 month)

n future
crimes

18 12 12 – – – – – – – – 14 3.46

hit rate 3.76 2.47 1.97 – – – – – – – – 2.73 0.92

n cells 299 359 189 – – – – – – – – 282.33 86.22

Approximately 881 cells = 1 square mile in Brooklyn (total n cells = 61,361)

For one month intervals, Time Period 1 refers to October 2014(future crimes and hit rate pertain to November
2014). For three month intervals, Time period 1 refers to October – December 2014 (future crimes and hit rate
pertain to January – March 2015)
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vulnerable to robbery. In contrast, KDE identified 3014 cells (SD = 256.85), or 4.91%
of places, as hot spots in Brooklyn, on average, for each 3 month time period. The INT
measure identified 282.33 cells (SD = 86.22), or less than one-half of 1 % of places, in
Brooklyn as problematic for robbery. Whether 1 month or 3 month intervals are
considered, the INT identifies the smallest geographic area as likely to experience
robbery in subsequent time periods. Appendix presents maps of places throughout
Brooklyn that were considered vulnerable to robbery overlaid on places that were
considered hot spots for robbery for each 3 month time period to visualize the
distribution and convergence of these locations.

Future crime counts and hit rates are also presented in Table 2. For example, RTM
identified 3130 cells as vulnerable to robbery in time period 1 (October 2014). These
3130 cells predicted 23 robberies in the next month, which produced a hit rate of 14.11
(i.e., 14.11% of November 2014 robberies were predicted in these 3130 vulnerable
cells). Overall, RTM predicted on average more future crimes, and yield higher hit rates
than KDE, for each month and every 3 months (albeit just slightly). It is important to
note that hit rate measures do not standardize for the size of the area required to predict
crime. For example, higher hit rates are often a function of a larger geographic area
identified as problematic (i.e., as a hot spot, vulnerable place, or both), which neces-
sarily captures more crime incidents. Although considering an entire jurisdiction as
problematic would produce a hit rate of 100 (i.e., all crimes predicted in the next time
period), this would not be meaningful or actionable to police who must identify specific
places to prioritize their limited resources. Therefore, we calculated PAI values to
evaluate the performance of each method for each time period because PAI standardizes
predictions by the size of the geographic area determined to be problematic; It
standardizes hit rates by geographic areas. Higher PAI values indicate better perfor-
mance, or more accurate predictions. Greater prediction accuracy reflects a higher hit
rate over a small geographic area. Table 3 presents the PAI values for each method for 1
month and 3 month periods and includes averages and standard deviations across each
time interval.

Table 3 PAI values for RTM, KDE, and the integrated measure at 1 month and 3 Month time intervals

Method Time period AVG SD

1 2 3 4 5 6 7 8 9 10 11

RTM

1 month PAI 2.77 2.22 3.39 5.81 2.33 5.31 3.90 4.35 3.25 2.78 3.55 3.61 1.16

3 month PAI 4.48 3.55 4.18 – – – – – – – – 4.07 0.47

KDE

1 month PAI 3.46 3.21 3.05 4.43 3.12 1.90 2.16 3.72 3.06 2.82 3.29 3.11 0.69

3 month PAI 2.56 2.55 2.80 – – – – – – – – 2.64 0.14

INT

1 month PAI 7.32 4.11 6.29 10.82 2.90 4.35 7.62 23.96 4.76 2.66 4.20 7.18 6.06

3 month PAI 7.71 4.22 6.40 – – – – – – – – 6.11 1.76

For 1 month intervals, Time Period 1 refers to October 2014 (predicting November 2014). For 3 month
intervals, Time period 1 refers to October – December 2014 (predicting January – March 2015)
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First, considering the methods individually, the PAI values displayed in Table 3
suggest that RTM tends to outperform KDE in terms of prediction accuracy. In 7 of
the 11 months, RTM produced a higher PAI value. Moreover, the average PAI value
for RTM across all months was 3.61 (SD = 1.16). In contrast, KDE resulted in a
higher PAI value in 4 of the 11 months. The average PAI value for KDE across all
months was 3.11 (SD = 0.69). However, the results of an independent samples t-test
reveal that these differences were not statistically significant.8 The results tell a
similar story when considering three-month intervals. In all three time periods,
RTM produced a higher PAI value. The average PAI value for RTM across all three
time periods is 4.07 (SD = 0.47) whereas the average PAI value for KDE across all
three time periods is 2.64 (SD = 0.14). The results of an independent samples t-test
reveal that these differences are statistically significant (p < 0.05). Overall, 3 month
PAI values were higher than 1 month PAI values for RTM, and 3 month PAI values
were higher for KDE than 3 month PAI values. Overall, these results complement
findings reported by Drawve (2016).

Spatial crime predictions are more accurate when considering aspects of both
crime vulnerability and exposure of places, at least when considering robbery
incidents in Brooklyn. Specifically, PAI values are highest when employing an
approach that identifies locations that are both hot spots via KDE and risky via
RTM. According to Table 3, the integrated approach produced the highest PAI
values in 8 of the 11 time periods. Moreover, the average PAI value for the
integrated approach across monthly periods was 7.18 (SD = 6.06), twice as high
as KDE or RTM alone. Results of independent samples t-tests reveal that these
differences are statistically significant (p < 0.05). Two monthly time periods (5 and
10) found KDE to be slightly, insignificantly, higher than the INT measure, perhaps
suggesting that robbery locations remained exceptionally stable (stationary) during
this period. Time period number 6 found RTM to be significantly higher than the
INT measures (KDE was exceptionally low, too), perhaps suggesting that robbery
location patterns were drastically changing and emerging elsewhere from prior hot
spots during this month compared to the previous month. Similar observations were
made across three-month intervals in which the INT measure produced the highest
PAI values for all three time periods. The average PAI value across these time
periods was 6.11 (SD = 1.76), which was 1.5 times greater than RTM alone and
more than 2 times higher than KDE alone. The differences between the INT
measure and KDE are statistically significant (p < 0.05). The differences are only
significant between RTM and the INT measure when broadening the level of
confidence to p < 0.10. Figures 3 and 4 plot the PAI values for each month and
every 3 months for visual comparison.

Discussion

This study sought to examine the independent and integrated efficacy of different crime
analysis methods for producing actionable spatial intelligence to identify places most

8 The two means of the average PAI values for RTM and KDE across all months were compared in t-tests with
sample sizes of 11 months. The small size of sample (n = 11) could be a limitation to the statistical conclusion.
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likely to experience crime and receive priority attention by police or other resources.
We focused specifically on KDE and RTM, two methods commonly utilized in crime
forecasting. Whereas KDE provides a measure of exposure to crime, RTM identifies a
location’s vulnerability to illegal behavior. Our goal was to determine if improvements
in predictive accuracy over one- and three-month periods could be achieved by
combining the outputs of KDE and RTM to produce a composite measure of vulner-
ability-exposure. These time periods were selected because they are operationally

Fig. 3 Monthly PAI values for RTM, KDE, and an integrated approach

Fig. 4 Quarterly PAI values for RTM, KDE, and an integrated approach
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meaningful and actionable temporal units of analysis (Rengert 1997) for police agen-
cies, generally, and for the NYPD (and Brooklyn), specifically, because CompStat
meetings often cover a 1-month period and other strategic interests often rely on
quarterly reports. Results provide evidence to support using the vulnerability-
exposure composite measure to enhance spatial crime prediction at micro places, and
thereby to prioritize target areas for policing operations.

The predictive accuracy of KDE relative to RTM varied across the time intervals.
Overall, RTM more frequently yielded higher PAI values across 1 month (n = 7) and
3 month (n = 3) time periods. Though, consistent with Dugato (2013), the differ-
ences between PAI values resulting from the two methods, particularly across
months, was minimal. And, we tested over twice as many theoretically relevant
environmental features in our RTM models, compared to Dugato’s, which resulted
in a more fully specified model of crime vulnerability in Brooklyn’s risk terrain, and
thus overall better potentials for forecast performance. However, given that the two
methods performed differently over time, and that RTM performed more effectively
overall over three-month time periods, further comparisons of these methods is
necessary to determine the most optimal approaches given the conditions under
which they are employed.

While RTM and KDE clearly have unique and meaningful values for crime
analysis, PAI values were highest when considering qualities of vulnerability and
exposure at locations, identified using both methods, combined. Overall, the inte-
grated approach produced PAI values that were twice as high as KDE or RTM
alone. These results are consistent with the exposure-vulnerability framework
proposed by Kennedy et al. (2015a, b), but advance their research findings by
demonstrating the implicit value of integrating these methods into a unified measure
for target area definition. Alone, neither KDE or RTM fully capitalize on all the
available empirically derived information about a place’s suitability for ongoing or
emergent crime problems. KDE identifies places where crime has concentrated in
the past but does not account for the collection of environmental features that may
facilitate offending or sustain its persistence. Likewise, RTM measures vulnerabil-
ity by accounting for the presence of environmental features that create conditions
suitable to offending, but it is limited by the potential that risky places may never be
known to motivated offenders or utilized for criminal activities in the face of other
places that are currently well known or ‘reputable’ options. Integrating the two
techniques yields actionable information that can be used to anticipate new crime
places with great efficiency.

Our findings are of practical value to police administrators who seek to prioritize
problem places into target areas for resource allocation and intervention. The
efficiency of police operations can be increased by maximizing crime prevention
efforts at particular places most likely to experience crime problems, while mini-
mizing the quantity and geographic area of relevant target locations. Our results
demonstrate that a higher proportion of crime is captured in subsequent time periods
relative to the geographic area required to address the spatial crime potential when
considering both vulnerability and exposure at places. This information can en-
hance strategic and tactical allocation of resources and intervention actions intended
to prevent and mitigate illegal behavior (Kennedy et al. 2011). Iterating the methods
employed in this study on a monthly or quarterly basis would allow for dynamic
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identification of very small target areas that are likely to experience a meaningful
portion of crime. Evidence-based dosages of directed patrols (Koper et al. 2013;
McGarrell et al. 1999; Rosenfeld et al. 2014; Sherman and Weisburd 1995; Taylor
et al. 2011) can be concentrated at these places. With a few confidently selected
target areas that are manageable for patrol by fewer police units, extra (i.e. previ-
ously obligated) personnel can be utilized in other ways. For example, directed
patrols might be paired with foot patrols (Piza and O’Hara 2014; Police Foundation
1981; Ratcliffe et al. 2011), who not only enhance police presence and community
interactions, but who could also aim to directly address the spatial risk factors
located within hot spots, identified by the risk terrain model. This might involve
officers regularly visiting businesses with known problems, observing and
reporting physical disorder such as unsecured vacant buildings or broken street
lights to code enforcement, or fostering relationships with nonprofit organizations
or social service providers who work with individuals at high risk for victimization.
Criminal justice researchers regularly conclude that place-oriented approaches
rooted in problem-oriented policing (Goldstein 1990) and situational crime preven-
tion (Clarke 1980) are most likely to be effective in preventing and reducing crime
in the long term (Skogan and Frydl 2004). An essential feature of these approaches
is that they involve intentional activities tailored towards addressing the underlying
characteristics of crime problems that cause places to be hot spots (Braga and
Clarke 2014). Whereas measures of exposure can help to identify where and when
crime concentrates over time, measures of vulnerability can diagnose what it is
about places that allows crime to emerge and persist.9 This is likely one explanation
for the robust findings of this study, demonstrating the predictive power of a
vulnerability-exposure framework for crime analysis.

While our findings advance theory and have practical implications for policing
practices and policies, they should be generalized carefully in light of a few
important qualifications. One pertains to the unavoidable subjective nature of
parameter selection for both KDE and RTM. For example, studies by Drawve (2016)
and Hart and Zandbergen (2014) note that certain changes in KDE parameters can lead
to changes in PAI values. While we selected KDE and RTM parameters in accordance
with theory and existing empirical research, specifically for the purpose of building
optimal models, it is possible that alternative parameter specifications could be ex-
plored more fully in future studies and other settings.

It would also be worthwhile to explore the integration of additional hot spot
techniques with RTM for crime prediction. We focus specifically on KDE because it
is commonly used in practice and has been found to outperform other techniques for
crime prediction (Chainey et al. 2008; Drawve 2016). However, other studies have
found differently (Levine 2008). Future research should explore using other methods,

9 Risk terrain models produced for this study identified the most problematic environmental features for each
month and for each quarter over the course of 1 year. It is interesting to note that while some of the 27
environmental features tested in the models were rarely or never identified as risk factors, others were
consistently found to increase the risk of robbery. In particular, grocery stores were risk factors for robbery
every month and food pantries and soup kitchens and subway entrances were risk factors in most months.
Conversely, banks, billiard halls, chemical dependency facilities, cinemas, clubs, colleges and universities,
homeless facilities, hospitals, hotels and motels, mental health facilities, developments, parking facilities,
parks, postal facilities, and recreation centers were never risk factors for robbery.
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in combination with one another, to determine which technique or collection of
techniques provide the best measure of exposure when integrated with measures of
vulnerability. Moreover, such studies could be further enhanced by incorporating
additional comparison criteria (e.g., see Adepeju et al. 2016).

Finally, we studied a single outcome event, robbery, over the course of a single year
in a single jurisdiction. Although robbery is particularly amenable to spatial crime
analysis and has been utilized in many previous studies (e.g. Drawve 2016; Dugato
2013; Hart and Zandbergen 2014; Levine 2008; Van Patten et al. 2009) it is not the only
crime of interest to the police or their constituents. Moreover, some studies have
incorporated multiple crime types (Chainey et al. 2008; Hart and Zandbergen 2014;
Levine 2008) and found that a given method’s performance varies depending on the
crime type under consideration. Although we calculated PAI values over one-month
and three-month time intervals, we used only a single crime type. Finally, Brooklyn is a
very large urban jurisdiction with local dynamics that may influence crime differently
than those in suburban, rural, or even smaller urban jurisdictions. Additional research is
necessary to test the generalizability of our results to other crime types, across more
temporal parameters, in other jurisdictions.

Conclusion

Consistent with a large and continuously growing body of research demonstrat-
ing that crime is much more likely to occur at some places relative to others,
police administrators have sought to narrow their operational focus by allocating
their department’s finite resources to the most problematic locations to maximize
crime prevention efforts. Modern advances in crime forecasting and prediction
have complemented this trend towards ‘refinement’ in policing, yet it has been
unclear how to best identify the most appropriate set of places to which
resources and attention should be prioritized. In this study, our goal was to
examine this issue further by exploring the ways in which spatial vulnerabilities
and exposures could be used to identify the ‘best’ target areas for police resource
allocation. We focused on two common crime analysis tools, kernel density
estimation (KDE) and risk terrain modeling (RTM) with the expectation that
crime would be predicted more accurately by integrating the outputs from both
of these methods, rather than relying on information produced from a single
method alone. We found support for this hypothesis using 1 year of data on
robbery in Brooklyn as reflected in improvements in the prediction accuracy
index, over one-month and three-month time periods, when utilizing an integrat-
ed approach that measures exposure via KDE and vulnerability via RTM. These
findings suggest that more actionable intelligence can be created to enhance
place-based policing by simultaneously considering information outputs from
multiple crime analysis methods that are designed to measure unique aspects of
the spatial dynamics of crime.
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